

WEST BENGAL STATE UNIVERSITY B.Sc. Major 2nd Semester Examination, 2024

CEMDSC202T-CHEMISTRY (MAJOR)

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

GROUP-A

Answer any ten questions from the following:

 $2 \times 10 = 20$

(i) In between BF3 and BCl3 which one is more acidic and why?

- (11) Find out the pH of 10⁻⁸ M HCl solution.
- (iii) When POCl₃ is dissolved in water, acidity will increase / decrease / remain urchanged - Explain with proper justification.
- (iv) Using the HSAB principle comment on which direction the following equilibrium is likely to proceed:

- Define 'Super acid' with an example.
- (vi) Find out the symmetry elements present in the following molecules:

(a)
$$H \xrightarrow{CH_3} CH_3$$
 (b)

- Draw the most stable and least stable isomers of 3-bromobutan-2-ol in Newman Projection.
- (viii) Label each asymmetric carbon in the following compound as R or S nomenclature.

(ix) Assign E/Z configurations to each of the following alkenes:

(a)
$$CH_3 \longrightarrow C \longrightarrow C \subset CH_2 - CH_3$$
 (b) $CH_2 \longrightarrow C \longrightarrow CH_3$ $CH_3 \longrightarrow CH_3$

(x) Designate (S) - CH₂OH - CHOH - CHO as D/L nomenclature.

NEP/B.Sc./Major/2nd Sem./CEMDSC202T/2024

- (xi) What do you understand by homogeneous eatalysis? Give an example.
- Write down the Arrhenius equation connecting rate constant of a reaction with its activation energy and explain the terms.
- (xiii) Justify or criticize the statement 'For any reaction, the rise of temperature will inevitably cause enhancement of reaction rate'.
- (xiv) Explain 'Primary Kinetic Salt Effect'.
- (xv) A first order reaction is 75% complete in 32 minutes. Calculate its half-life.

GROUP-B

Answer any six questions taking two questions from each unit	5×6 = 30
Unit-1	

ducations from the following	342-10
2, (a) In between BMe3 and BPh3, which one is more acidic and why?	2
(c) Explain when HNO ₃ can act as a base.	2
CF Explain when HNO ₃ can act as a base.	1

 (a) In between H₃PO₄ and H₃PO₅, which one is more acidic and why? 	2
(b) Explain the following observations using HSAB principle:	2
- PP	2

the following observations using HSAB principle:

$$R - C1 \xrightarrow{KCN} R - CN$$
 $R - C1 \xrightarrow{AgCN} R - NC$

(c) What do you mean by 'Common ion effect'?

Unit-2

Answer any two questions from the following

 $5 \times 2 = 10$

 (a) Label the following pairs of compounds as homomers, constitutional isomers, diastereomers or enantiomers.

(i)
$$CH_3$$
 $C=C$ H and H $C=C$ H

(ii)
$$CO_2H$$
 and H_2N CO_2H H_2N CH_3

NEP/B.Sc./Major/2nd Sem./CEMDSC202T/2024

- (b) All epimers are diastercomers, but all diastercomers are not epimers. Justify the statement with suitable examples.
- 9. (a) Justify the following statements with suitable examples:
 3

 (b) The E-isomer of an alkene will not necessarily be the trans isomer.
 - (ii) All meso-compounds are optically inactive in-spite of the presence of more than one chiral center.
 - Assign E or Z to each molecule.

 (i) Br (ii) CHO
- 7. (a) Draw the energy profile diagram of 1,2-dihydroxyethane as a function of dihedral angle. Also draw the structures of anti, gauche and eclipsed conformations and compare their relative stabilities.
 - (b) Draw the most stable conformer of n-butane for the rotation around C₂ C₃ bond and label that conformer with Klyne-Prelog terminology.

Unit-3

Answer any two questions from the following 5×2 = 10 8. (a) At 25°C the half-life period for the decomposition of N₂O₅ is 2.05×10⁴ S and is independent of the initial concentration of N₂O₅. (b) What is the order of the reaction? (c) What length of time is required for 80% of N₂O₅ to decompose? (b) Show that the ratio of t_{1/2}/t_{3/4} of any nth order reaction (n≠1) with identical initial concentration of the reactants, can be written as a function of n alone.

- 9. (a) Explain Activation Energy with the help of a diagram.
- (b) What is the unit of pre-exponential factor (A) for a first order reaction?
- 10(a) Initial rate of a first order reaction becomes three times when the temperature increases from 400 K to 420 K. If the half-life period of the reaction at 400 K is 10 minutes, find out the time needed for 25% conversion of the reactant into product at 420 K, and the energy of activation.
- (b) Write a short note on Lindemann hypothesis.