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Syllabus:

Unit -1 : Riemann integration: inequalities of upper and lower sums, Darboux integration, Darboux

theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through

Riemann sums, equivalence of two Definitions. Riemann integrability of monotone and continuous

functions, Properties of the Riemann integral; definition and integrability of piecewise continuous

and monotone functions. Intermediate Value theorem for Integrals, Fundamental theorem of Integral

Calculus.

Unit-2 : Improper integrals, Convergence of Beta and Gamma functions.

Unit-3 : Pointwise and uniform convergence of sequence of functions. Theorems on continuity, deriv-

ability and integrability of the limit function of a sequence of functions. Series of functions, Theorems

on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for

uniform convergence and Weierstrass M-Test.

Unit 4: Fourier series: Definition of Fourier coefficients and series, Reimann Lebesgue lemma, Bessel’s

inequality, Parseval’s identity, Dirichlet’s condition. Examples of Fourier expansions and summation

results for series.

Unit – 5: Power series, radius of convergence, Cauchy Hadamard Theorem. Differentiation and

integration of power series; Abel’s Theorem; Weierstrass Approximation Theorem.

1 Riemann Integration

1.1 Partition

Definition. 1.1 Let [a, b] be a closed interval in R. By a partition P of [a, b] we mean a

finite set of numbers {x0, x1, . . . , xn} such that a = x0 < x1 < x2 < · · · < xn = b.

We write this partition as P : a = x0 < x1 < x2 < · · · < xn = b or as P = {x0, x1, x2, . . . <
xn}, where a = x0, b = xn.

Example. 1.2 Let us consider the interval [0, 1]. Then the set {0, .25, .5, .75, 1} is a partition

of [0, 1]. Another example of partition of the same interval is {0, .1, .45, .6, .8, 1}. Note that

in the first example the points are equally spaced whereas in the second one the points are

in unequal spacing.

Definition. 1.3 Let [a, b] be an interval in R, P : a = x0 < x1 < x2 < · · · < xn = b and

Q : a = y0 < y1 < y2 < · · · < ym = b be two partitions of [a, b]. Then P is said to be a
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refinement of Q if {x0, x1, x0, . . . , xn} ⊃ {y0, y1, y2, . . . , ym}. It is obvious in this case that

n ≥ m.

Example. 1.4 1. Let us consider the partitions P : 0 < .25 < .5 < .75 < 1 and Q : 0 <

.2 < .25 < .45 < .5 < .6 < .75 < .9 < 1 of the interval [0, 1]. Then Q is a refinement of

P .

2. Let us consider the partitions P = {0, .25, .5, .75, 1} and Q = {0, .2, .4, .6, .8, 1}. Then

neither P is a refinement of Q nor Q is a refinement of P .

Notation. 1.5 The set of all partitions of an interval [a, b] will be denoted by P[a, b]. For

P1, P2 ∈ P[a, b], if P2 is a refinement of P1, it will be denoted by P1 ≺ P2.

Theorem. 1.6 Let [a, b] be an interval in R. Then

1. For every P in P[a, b], P ≺ P .

2. If P1, P2, P3 ∈ P[a, b] such that P1 ≺ P2 and P2 ≺ P3, then P1 ≺ P3.

3. If P1, P2 ∈ P[a, b] then there exists P3 in P[a, b] such that P1 ≺ P3 and P2 ≺ P3.

Example. 1.7 Consider the example 2 of 1.4. The partition R = {0, 0.2, 0.25, 0.4, 0.5, 0.6,-
0.75, 0.8, 1} is a refinement of both P and Q.

Definition. 1.8 Let P : a = x0 < x1 < x2 < · · · < xn = b be a partition of the interval

[a, b]. Then the norm of P is defined as max{xr − xr−1 : 1 ≤ r ≤ n}, and is denoted by ||P ||.

Example. 1.9 In the example 1.2 norm of the first partition is 0.25 whereas the norm of the

second partition is 0.35.

Notation. 1.10 It can be noted that if P1, P2 are two partitions such that P1 ≺ P2, then

||P1|| > ||P2||.

1.2 Upper and Lower Sum

Definition. 1.11 Let [a, b] be an interval in R, f : [a, b] → R be a bounded function,

P : a = x0 < x1 < x2 < · · · < xn = b be a partition of [a, b]. For r = 1, 2, . . . , n define

Mr = sup{f(x) : xr−1 ≤ x ≤ xr}, mr = inf{f(x) : xr−1 ≤ x ≤ xr}, δr = xr − xr−1.

Then the sum
∑n

r=1Mrδr is called the upper sum of f for the partition P and is denoted bu

U(f, P ). The sum
∑n

r=1mrδr is called the lower sum of f for the partition P and is denoted

bu L(f, P ).



Department of Mathematics, P R Thakur Govt College 3

Henceforth by a function we always mean a bounded function.

Example. 1.12 1. Let f(x) = x, 0 ≤ x ≤ 1, P be defined as P = {0, .25, .5, .75, 1}. Then
δ1 = δ2 = δ3 = δ4 = .25, M1 = sup{x : 0 ≤ x ≤ .25} = .25,m1 = inf{x : 0 ≤ x ≤
.25} = 0,M2 = sup{x : .25 ≤ x ≤ .5} = .5,m2 = inf{x : .25 ≤ x ≤ .5} = .25,M3 =

sup{x : .5 ≤ x ≤ .75} = .75,m3 = inf{x : .5 ≤ x ≤ .75} = .5,M4 = sup{x : .75 ≤ x ≤
1} = 1,m4 = inf{x : .75 ≤ x ≤ 1} = .75. So U(f, P ) = M1δ1 +M2δ2 +M3δ3 +M4δ4 =

0.0625 + 0.125 + 0.1875 + 0.25 = 0.625. Similarly L(f, P ) = 0.375

2. Let f(x) = 4x(1 − x), 0 ≤ x ≤ 1. P1 = {0, .25, .5, .75, 1} and P2 = {0, .2, .4, .6, .8, 1}.
Then it can easily be verified that U(f, P1) = 0.875, L(f, P1) = 0.375, U(f, P2) =

0.84, L(f, P2) = .448.

O

y

x
.25 .5 .75 1

1

L(f, P1)

O

y

x
.25 .5 .75 1

1

U(f, P1)

O

y

x
.2 .4 .6 .8 1

1

L(f, P2)

O

y

x
.25 .5 .75 1

1

U(f, P2)

Theorem. 1.13 For a function f defined on an interval [a, b] and for any partition P of

[a, b], L(f, P ) ≤ U(f, P ).
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Proof. This follows immediately since mr ≤ Mr for every r, 1 ≤ r ≤ n.

Theorem. 1.14 Let f be a function defined on an interval [a, b], P,Q be two partitions of

[a, b] such that Q is a refinement of P . Then U(f, P ) ≥ U(f,Q) and L(f, P ) ≤ L(f,Q).

Proof. Let P = {x0, x1, x2, . . . , xn}. Note that Q is obtained by inserting finite number of

points between the elements of P . It is sufficient to show that by inserting a single point the

result holds. Let us consider the partition P1 : a = x0 < x1 < x2 < · · · < xi−1 < y < xi <

· · · < xn = b which is obtained by inserting a single point y between xi−1 and xi. Let

Mr = sup{f(x) : xr−1 ≤ x ≤ xr}, mr = inf{f(x) : xr−1 ≤ x ≤ xr}, 1 ≤ r ≤ n.

Also let,

M ′
i = sup{f(x) : xi−1 ≤ x ≤ y}, m′

i = inf{f(x) : xi−1 ≤ x ≤ y}.

and

M ′′
i = sup{f(x) : y ≤ x ≤ xi}, m′′

i = inf{f(x) : y ≤ x ≤ xi}.

Then Mi ≥ M ′
i , Mi ≥ M ′′

i and mi ≤ m′
i, mi ≤ m′′

i .

Now

U(f, P ) =
n∑

r=1

Mr(xr − xr−1)

=

i−1∑
r=1

Mr(xr − xr−1) +Mi(xi − xi−1) +

n∑
r=i+1

Mr(xr − xr−1)

=
i−1∑
r=1

Mr(xr − xr−1) +Mi(xi − y) +Mi(y − xi−1) +
n∑

r=i+1

Mr(xr − xr−1)

≥
i−1∑
r=1

Mr(xr − xr−1) +M ′
i(xi − y) +M ′′

i (y − xi−1) +
n∑

r=i+1

Mr(xr − xr−1)

= U(f, P1).

And

L(f, P ) =

n∑
r=1

mr(xr − xr−1)

=
i−1∑
r=1

mr(xr − xr−1) +mi(xi − xi−1) +

n∑
r=i+1

mr(xr − xr−1)

=

i−1∑
r=1

mr(xr − xr−1) +mi(xi − y) +mi(y − xi−1) +

n∑
r=i+1

mr(xr − xr−1)

≤
i−1∑
r=1

mr(xr − xr−1) +m′
i(xi − y) +m′′

i (y − xi−1) +

n∑
r=i+1

mr(xr − xr−1)

= L(f, P1).



Department of Mathematics, P R Thakur Govt College 5

Thus U(f, P ) ≥ U(f, P1) and L(f, P ) ≤ L(f, P1). ■

Notation. 1.15 It is observed that by refining a partition the upper sum is decreased and

the lower sum is increased.

In view of the above two theorems we have the following result.

Corollary. 1.16 Let f be a function defined on an interval [a, b]. Then for any two parti-

tions P,Q of [a, b], U(f, P ) ≥ L(f,Q).

Proof. Note that there exists a partition R of [a, b] which is a refinement of both P and

Q. Then by the above theorem U(f, P ) ≥ U(f,R) and L(f,Q) ≤ L(f,R). Also by Theorem

1.13 U(f,R) ≥ L(f,R). Thus U(f, P ) ≥ U(f,R) ≥ L(f,R) ≥ L(f,Q). ■

Notation. 1.17 It is observed that the upper sum for any partition is greater than or equal

to the lower sum for any partition. Thus the set {U(f, P ) : P ∈ P[a, b]} is bounded below,

any lower sum of f being a lower bound; and the set {L(f, P ) : P ∈ P[a, b]} is bounded above,

any upper sum of f being an upper bound.

Definition. 1.18 The difference U(f, P )−L(f, P ) is called the oscillatory sum of f for the

partition P of [a, b].

1.3 Definition of Riemann Integration

Let f be a bounded function defined in a closed interval [a, b]. It has already been observed

that the set of all the upper sums of f is bounded below and the set of all the lower sums of

f is bounded above. We define the lower and upper integral as follows:

Definition. 1.19 The infimum of all the upper bounds of f , where the infimum is taken

over all the partitions of [a, b], is called the upper integral of f over [a, b] and is denoted by∫ b
a f(x) dx. The supremum of all the lower sums of f , where the supremum is taken over all

the partitions of a, b], is called the lower integral of f over [a, b] and is denoted by
∫ b
a f(x) dx.

Thus,∫ b

a
f(x) dx = inf {U(f, P ) : P ∈ P[a, b]} and

∫ b

a
f(x) dx = sup {L(f, P ) : P ∈ P[a, b]} .

As any lower sum is always less than or equal to any upper sum it immediately follows that∫ b
a f(x) dx ≤

∫ b
a f(x) dx.

Definition. 1.20 A bounded function f defined on a closed interval [a, b] is said to be

Riemann Integrable, or simply R-integrable, if
∫ b
a f(x) dx =

∫ b
a f(x) dx, the common value is

called the Riemann integral of f over [a, b] and is denoted by
∫ b
a f(x) dx.
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Example. 1.21 1. Every constant function is Rieman integrable. Let f(x) = k, a ≤
x ≤ b. Then for any partition P : a = x0 < x1 < x2 < · · · < xn = b, we have

Mr = mr = k, 1 ≤ r ≤ n, Thus U(f, P ) = L(f, P ) = k(b− a).

2. The function f(x) = x, 0 ≤ x ≤ 1 is R-integrable. For n ∈ N, consider the par-

tition Pn : 0 < 1
n < 2

n < . . . < n−1
n < 1, the r−th subinterval being [ r−1

n , r
n ].

Since f is increasing in [0, 1], we have Mr = sup{f(x) : r−1
n ≤ x ≤ r

n} = r
n and

mr = inf{f(x) : r−1
n ≤ x ≤ r

n} = r−1
n . Also δr = 1

n for all r = 1, 2, . . . , n.

So U(f, Pn) =
∑n

r=1Mrδr =
∑n

r=1
r
n · 1

n = 1
n2

∑n
r=1 r = n(n+1)

2n2 = 1
2(1 + 1

n) and

L(f, Pn) =
∑n

r=1mrδr =
∑n

r=1
r−1
n · 1

n = 1
n2

∑n
r=1(r − 1) = (n−1)n

2n2 = 1
2(1 −

1
n) Taking

limit as n → ∞, we have limn→∞ U(f, Pn) =
1
2 and limn→∞ L(f, Pn) =

1
2 . Note that

{Pn : n ∈ N} ⊂ P[a, b]. Thus 1
2 = limn→∞ U(f, Pn) ≥

∫ 1̄
0 f(x) dx ≥

∫ 1
0 f(x) dx ≥

limn→∞ L(f, Pn) = 1
2 Hence

∫ 1̄
0 f(x) dx =

∫ 1
0 f(x) dx = 1

2 . This shows that f is

R-integrable in [0, 1] and
∫ 1
0 f(x) dx = 1

2 .

3. Consider the function f in [a, b] defined as follows: f(x) = 0, x irrational, f(x) = 1, x

rational. Let P : a = x0 < x1 < x2 < · · · < xn = b be a partition of [a, b]. Since

every interval contains rational numbers as well as irrational numbers, we have Mr =

sup{f(x) : xr−1 ≤ x ≤ xr} = 1 and mr = inf{f(x) : xr−1 ≤ x ≤ xr} = 0. Thus

U(f, P ) =
∑n

r=1Mrδr = 1 ·
∑n

r=1(xr − xr−1) = (b − a) and L(f, P ) =
∑n

r=1mrδr =

0 ·
∑n

r=1(xr − xr−1) = 0 Since this is true for any partition P ,
∫ b
a f(x) dx = 0 and∫ b̄

a f(x) dx = 1. Thus f is not R-integrable.

1.4 A necessary and sufficient condition: Riemann’s criteria

Theorem. 1.22 A bounded function f : [a, b] → R is R-integrable if and only if for every

ϵ > 0, there exists a partition Pϵ of [a, b] such that

U(f, Pϵ)− L(f, Pϵ) < ϵ. (∗)

Proof. Assume that f is R-integrable. Then
∫ b
a f(x) dx =

∫ b̄
a f(x) dx =

∫ b
a f(x) dx. Let

ϵ > 0 be given. Then since
∫ b̄
a f(x) dx = inf{U(f, P ) : P ∈ P[a, b]}, there exists a partition

P1 of [a, b] such that U(f, P1)−
∫ b̄
a f(x) dx < ϵ/2, i.e.,

U(f, P1)−
∫ b

a
f(x) dx < ϵ/2. (I)

Similarly, since
∫ b
a f(x) dx = sup{L(f, P ) : P ∈ P[a, b]}, there exists a partition P2 of [a, b]

such that
∫ b
a f(x) dx− L(f, P2) < ϵ/2, i.e.,∫ b

a
f(x) dx− L(f, P2) < ϵ/2. (II)
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Adding (I) and (II) we have

U(f, P1)− L(f, P2) < ϵ. (III)

Now let Pϵ be a partition which is a refinement of both P1 and P2. Then U(f, Pϵ) ≤ U(f, P1)

and L(f, P2) ≤ L(f, Pϵ). Also since L(f, Pϵ) ≤ U(f, Pϵ), we have

L(f, P2) ≤ L(f, Pϵ) ≤ U(f, Pϵ) ≤ U(f, P1). (IV )

From (III) and (IV ) we have U(f, Pϵ)− L(f, Pϵ) < ϵ.

Conversely, assume that there exists a partition Pϵ of [a, b] such that the condition (∗) holds.
Note that L(f, Pϵ) ≤

∫ b
a f(x) dx ≤

∫ b̄
a f(x) dx ≤ U(f, Pϵ) which, together with the condition

(∗), implies that
∫ b̄
a f(x) dx −

∫ b
a f(x) dx < ϵ, i.e.,

∫ b̄
a f(x) dx <

∫ b
a f(x) dx + ϵ. Since ϵ > 0

is arbitrary, it follows that ∫ b̄

a
f(x) dx ≤

∫ b

a
f(x) dx.

Again it is always true that
∫ b
a f(x) dx ≤

∫ b̄
a f(x) dx. Thus,

∫ b
a f(x) dx =

∫ b̄
a f(x) dx, i.e., f

is R-integrable. ■

Corollary. 1.23 If f : [a, b] → R is a bounded function and {Pn : n ∈ N} is a sequence of

partitions of [a, b] such that

lim
n→∞

(U(f, Pn)− L(f, Pn)) = 0,

then f is R-integrable in [a, b] and
∫ b
a f(x) dx = limn→∞ U(f, Pn) = limn→infty L(f, Pn).

Proof. Let ϵ > 0. Then there exists N ∈ N such that for all n ≥ N , U(f, Pn)−L(f, Pn) < ϵ.

Thus by Reimann’s criteria f is R-integrable in [a, b]. Also since for any n ∈ N, L(f, Pn) ≤∫ b
a f(x) dx ≤

∫ b̄
a f(x) dx ≤ U(f, Pn), and limn→∞ U(f, Pn) = limn→infty L(f, Pn), it follows

that ∫ b

a
f(x) dx =

∫ b̄

a
f(x) dx = lim

n→∞
U(f, Pn) = lim

n→∞
L(f, Pn).

Thus
∫ b
a f(x) dx = limn→∞ U(f, Pn) = limn→∞ L(f, Pn). ■

Example. 1.24 The function f(x) = x2, 0 ≤ x ≤ 1 is R-integrable in [0, 1]. Consider the

partition Pn : 0 < 1
n < 2

n < · · · < n−1
n < 1. Since f is increasing in [0, 1], we have

Mr = sup

{
f(x) :

r − 1

n
≤ x ≤ r

n

}
= sup

{
x2 :

r − 1

n
≤ x ≤ r

n

}
=

( r

n

)2

and

mr = inf

{
f(x) :

r − 1

n
≤ x ≤ r

n

}
= inf

{
x2 :

r − 1

n
≤ x ≤ r

n

}
=

(
r − 1

n

)2

.
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Also δr =
1
n for 1 ≤ r ≤ n. Thus

U(f, Pn) =
n∑

r=1

( r

n

)2
· 1
n
=

1

n3

n∑
r=1

r2 =
n(n+ 1)(2n+ 1)

6n3
=

1

6

(
1 +

1

n

)(
2 +

1

n

)
and

L(f, Pn) =

n∑
r=1

(
r − 1

n

)2

· 1
n
=

1

n3

n∑
r=1

(r− 1)2 =
(n− 1)(n)(2n− 1)

6n3
=

1

6

(
1− 1

n

)(
2− 1

n

)
.

Therefore limn→∞ U(f, Pn) =
1
3 = limn→∞ L(f, Pn). Thus f is R-integrable and∫ b

a
f(x) dx =

1

3
.

There is another form of Riemann’s criterion for which we need the following results.

Lemma. 1.25 Let f be a bounded function defined on an interval [a, b] such that |f(x)| ≤
k, ∀x ∈ [a, b]. Let P1 be a partition of [a, b] and P2 be a refinement of P1 which contains at

the most p additional points. Then

U(f, P1)− U(f, P2) ≤ 2kpδ and L(f, P2)− L(f, P1) ≤ 2kpδ.

where ||P1|| = δ.

Proof. Let P1 : a = x0 < x1 < x2 < · · · < xn = b. We first consider a partition P ′
1 which

contains a single additional point, i.e., P ′
1 : a = x0 < x1 < x2 < · · · < xi−1 < x′i < xi < · · · <

xn = b. Let

Mr = sup{f(x) : xr−1 ≤ x ≤ xr},mr = inf{f(x) : xr−1 ≤ x ≤ xr}, for 1 ≤ r ≤ n
and

M ′
i = sup{f(x) : xi−1 ≤ x ≤ x′i},m′

i = inf{f(x) : xi−1 ≤ x ≤ x′i},

M ′′
i = sup{f(x) : x′i ≤ x ≤ xi},m′

i = inf{f(x) : x′i ≤ x ≤ xi}.

Then it can easily be calculated that

U(f, P1)− U(f, P ′
1) =

Mi(xi − xi−1)−
(
M ′

i(x
′
i − xi−1)−M ′′

i (xi − x′i)
)

=
(
Mi(x

′
i − xi−1) +Mi(xi − x′i)

)
−
(
M ′

i(x
′
i − xi−1)−M ′′

i (xi − x′i)
)

=
(
Mi −M ′

i

)
(x′i − xi−1) +

(
Mi −M ′′

i

)
(xi − x′i).

Since −k ≤ f(x) ≤ k ∀x ∈ [a, b], we have −k ≤ M ′
i ≤ Mi ≤ k and −k ≤ M ′′

i ≤ Mi ≤ k, from

which it immediately follows that Mi −M ′
i ≤ 2k and Mi −M ′′

i ≤ 2k. Thus

U(f, P1)− U(f, P ′
1) ≤ 2k(x′i − xi−1) + 2k(xi − x′i) = 2k(xi − xi−1) ≤ 2kδ.

After adding p such points to P1 we get P2 and thus obtain U(f, P1)− U(f, P2) ≤ 2kpδ.

In a similar manner we can show that L(f, P2)− L(f, P1) ≤ 2kpδ.
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Theorem. 1.26 Darboux’s Theorem: If f is bounded function on [a, b], then for each

ϵ > 0, there exists a δ > 0 such that for every partition P of [a, b] with ||P || < δ,

U(f, P )−
∫ b̄

a
f(x) dx < ϵ and

∫ b

a
f(x) dx− L(f, P ) < ϵ,

Proof. Since f is bounded, there exists k > 0 such that |f(x)| ≤ k for all x ∈ [a.b]. Let ϵ > 0

be given. Note that
∫ b̄
a f(x) dx = sup{U(f, P ) : P ∈ P[a, b]}. So there exists a partition

P1 : a = x0 < x1 < x2 < · · · < xn = b of [a, b] such that

U(f, P1) <

∫ b̄

a
f(x) dx+ ϵ/2. (∗)

The partition P1 has n+1 points including a and b. Choose δ > 0 such that 2k(n−1)δ < ϵ/2.

Let us consider any partition P of [a, b] with ||P || < δ. Let P2 = P ∪ P1. Then P2 is a

refinement of both P and P1 and has at the most n − 1 additional points than that of P .

Thus U(f, P2) ≤ U(f, P1) and U(f, P2) ≤ U(f, P ). Also by the above lemma,

U(f, P )− U(f, P2) < 2k(n− 1)δ

⇒ U(f, P ) < 2k(n− 1)δ + U(f, P2)

⇒ U(f, P ) < 2k(n− 1)δ + U(f, P1) < 2k(n− 1)δ +
∫ b̄
a f(x) dx+ ϵ/2 (using (∗) above)

⇒ U(f, P ) < ϵ/2 +
∫ b̄
a f(x) dx+ ϵ/2

⇒ U(f, P )−
∫ b̄
a f(x) dx < ϵ.

Similarly we can show the other inequality. ■

Theorem. 1.27 A bounded function f defined on [a, b] is R-integrable if and only if for every

ϵ > 0 there exists δ > 0 such that for every partition P with ||P || < δ, U(f, P )−L(f, P ) < ϵ.

Proof. Let us assume that f is R-integrable. Then∫ b̄

a
f(x) dx =

∫ b

a
f(x) dx =

∫ b

a
f(x) dx.

Let ϵ > 0 be given. By Daroux’s Theorem there exists δ > 0 such that for all partition P

with ||P || < δ,

U(f, P )−
∫ b̄

a
f(x) dx < ϵ/2 and

∫ b

a
f(x) dx− L(, P ) < ϵ/2,

which imply that

U(f, P )−
∫ b

a
f(x) dx < ϵ/2 and

∫ b

a
f(x) dx− L(, P ) < ϵ/2.

Adding we get U(f, P )− L(f, P ) < ϵ.
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Conversely, Let the condition hold. Since for any partition P of [a, b],

L(f, P ) ≤
∫ b

a
f(x) dx ≤

∫ b̄

a
f(x) dx ≤ U(f, P ),

we have
∫ b̄
a f(x) dx −

∫ b
a f(x) dx ≤ U(f, P ) − L(f, P ). Since for given ϵ > 0 it is possible

to find a partition P with U(f, P ) − L(f, P ) < ϵ, we have
∫ b̄
a f(x) dx −

∫ b
a f(x) dx < ϵ, i.e.,∫ b̄

a f(x) dx <
∫ b
a f(x) dx+ ϵ. This is true for every ϵ > 0. Thus

∫ b̄
a f(x) dx ≤

∫ b
a f(x) dx.

On the other hand it is always true that
∫ b
a f(x) dx ≤

∫ b̄
a f(x) dx. Thus,

∫ b̄
a f(x) dx =∫ b

a f(x) dx, i.e., f is R-integrable. ■

1.5 Exercise

1. Let f(x) = x2, 0 ≤ x ≤ 1. Consider the partitions P1 = {0, .25..5, .75, 1} and P2 =

{0, .2, .4, .6, .8, 1}. Find U(f, P1), L(f, P1), U(f, P2) and (f, LP2).

2. Let f(x) = x(1−x), 0 ≤ x ≤ 1. For n ∈ N, let Pn be the partition {0, 1
n ,

2
n , . . . ,

n−1
n , 1}.

Find U(f, Pn) and L(f, Pn). Hence show that limn→∞(U(f, Pn)− L(f, Pn)) = 0.

1.6 Some sufficient conditions of integrability

Here we discuss some sufficient conditions of integrability.

Theorem. 1.28 Every bounded monotone function is R-integrable.

Proof. Let us consider a monotonic increasing function f : [a, b] → R. Let ϵ > 0 be any given

real number. It is sufficient to find a partition P of [a, b] such that U(f, P ) − L(f, P ) < ϵ.

For n ∈ N consider the partition Pn : a = x0 < x1 < x2 < · · · < xn = b, where the points xi’s

are placed with equal spacing, i.e., δi = xi − xi−1 = b−a
n , 1 ≤ i ≤ n. Since the function f is

increasing,

Mr = sup{f(x) : xr−1 ≤ x ≤ xr} = f(xr) and mr = inf{f(x) : xr−1 ≤ x ≤ xr} = f(xr−1).

Thus

U(f, Pn)− L(f, Pn) =
n∑

r=1

δr(Mr −mr)

=

n∑
r=1

b− a

n
(f(xr)− f(xr−1)

=
b− a

n
(f(b)− f(a)) . (1)

Now if we choose n such that n > (b−a)(f(b)−f(a))
ϵ , i.e., 1

n < ϵ
(b−a)(f(b)−f(a)) , then by using

relation (1), U(f, Pn)− L(f, Pn) = (b− a)(f(b)− f(a)) 1n < ϵ.
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Similarly, if f is monotonically decreasing, then Mr = sup{f(x) : xr−1 ≤ x ≤ xr} = f(xr−1)

and mr = inf{f(x) : xr−1 ≤ x ≤ xr} = f(xr) from which we can get the same conclusion. ■

Theorem. 1.29 If f : [a, b] → R is continuous, then it is R-integrable on [a, b].

Proof. Since f is continuous in a closed interval, it is uniformly continuous. Let ϵ > 0 be

given. Then there exists δ > 0 such that for all x1, x2 ∈ [a, b],

|x1 − x2| < δ ⇒ |f(x1)− f(x2)| <
ϵ

(b− a)
. (2)

Choose a partition P : a = x0 < x1 < x2 < · · · < xn = b such that ||P || < δ, i.e., for all

r = 1, 2, · · · , n, xr −xr−1 < δ. Note that f being continuous on closed interval, it is bounded

and attains its bounds. So for any r, 1 ≤ r ≤ n, there exists x′r, x
′′
r ∈ [xr−1, xr] such that

Mr = sup{f(x) : xr−1 ≤ x ≤ xr} = f(x′r)

and

mr = inf{f(x) : xr−1 ≤ x ≤ xr} = f(x′′r).

Then Mr − mr = f(x′r) − f(x′′r). Since xr − xr−1 < δ, we have x′r − x′′r < δ and hence by

using the identity (2) we get |f(x′r)− f(x′′r)| < ϵ/(b− a). Thus

U(f, P )− L(f, P ) =
n∑

r=1

δr(Mr −mr)

=
n∑

r=1

(xr − xr−1)(f(x
′
r)− f(x′′r))

<

n∑
r=1

(xr − xr−1)
ϵ

(b− a)

=
ϵ

(b− a)
(xn − x0)

=
ϵ

(b− a)
(b− a) = ϵ

This shows that f is R-integrable. ■

Theorem. 1.30 If a bounded function f : [a, b] → R has a finite number of points of discon-

tinuity then f is R-integrable on [a, b].

Proof. Let ϵ > 0 be given. Let f be discontinuous at the points a1, a2, · · · , ap. We enclose

these points with non-intersecting intervals [a′1, a
′′
1], [a

′
2, a

′′
2], · · · , [a′p, a′′p] such that the total

length of these intervals is less than ϵ/2(M−m) where M = sup{f(x) : a ≤ x ≤ b} and m =

inf{f(x) : a ≤ x ≤ b}, i.e.,

ai ∈ [a′i, a
′′
i ] for 1 ≤ i ≤ p, [a′i, a

′′
i ] ∩ [a′j , a

′′
j ] = ∅ for i ̸= j

and

p∑
i=1

(a′′i − a′i) <
ϵ

2(M −m)
.
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a ba′1 a1 a
′′
1

P1

a′2 a2 a
′′
2

P2

a′p ap a
′′
p

Pp+1

Again f , being continuous on each of the p + 1 intervals [a, a′1], [a
′′
1, a

′
2], · · · , [a′′p−1, a

′
p], [a

′′
p, b],

is integrable there. So there exist partitions P1, P2, . . . , Pp+1 of [a, a′1], [a′′1, a
′
2], · · · , [a′′p, b]

respectively, such that U(f, Pi)− L(f, Pi) <
ϵ

2(p+1) for 1 ≤ i ≤ p+ 1. Let P be the partition

of [a, b] consisting of all the points of Pi, 1 ≤ i ≤ p+1, together with the subintervals [a, a′1],

[a′′1, a
′
2], · · · , [a′′p, b].

Then the contribution of U(f, P ) − L(f, P ) due to a subinterval [a′i, a
′′
i ], 1 ≤ i ≤ p, is less

than or equal to (M − m)(a′′i − a′i). So the contribution of U(f, P ) − L(f, P ) due to all

the subintervals [a′i, a
′′
i ], 1 ≤ i ≤ p, is less than or equal to

∑p
i=1(M −m)(a′′i − a′i) = (M −

m)
∑p

i=1(a
′′
i − a′i) < (M −m) ϵ

2(M−m) =
ϵ
2 .

Again the contribution of U(f, P )−L(f, P ) due to a partition Pj , 1 ≤ j ≤ p+ 1, is less than
ϵ

2(p+1) . So, the contribution of U(f, P )− L(f, P ) due to all the partitions Pj , 1 ≤ j ≤ p+ 1,

is less than
∑p+1

j=1
ϵ

2(p+1) = (p+ 1) ϵ
2(p+1) =

ϵ
2 .

Thus U(f, P )− L(f, P ) < ϵ
2 + ϵ

2 = ϵ, which shows that f is R- integrable. ■

Theorem. 1.31 Let f be a bounded function defined on a closed interval [a, b]. If the set of

points of discontinuity of f has a finite number of limit points then f is R-integrable over

[a, b].

Proof. Let ϵ > 0 be given. Let M = sup{f(x) : a ≤ x ≤ b} and m = inf{f(x) : a ≤ x ≤ b}.
Let a1, a2, . . . , ap be the limit points of the set of points of discontinuity. We enclose these

points by non-intersecting intervals [a′1, a
′′
1], [a

′
2, a

′′
2], . . . , [a

′
p, a

′′
p] such that the total length of

these intervals is less than ϵ/2(M −m), i.e.,

ai ∈ [a′i, a
′′
i ] for 1 ≤ i ≤ p, [a′i, a

′′
i ] ∩ [a′j , a

′′
j ] = ∅ for i ̸= j and

p∑
i=1

(a′′i − a′i) <
ϵ

2(M −m)
.

Let us define Mi = sup{f(x) : a′i ≤ x ≤ a′′i } and mi = inf{f(x) : a′i ≤ x ≤ a′′i }, 1 ≤ i ≤ p.

Thenm ≤ mi ≤ Mi ≤ M for 1 ≤ i ≤ p from which it follows thatMi−mi ≤ M−m, 1 ≤ i ≤ p.

Now each of the p + 1 intervals [a′, a′1], [a
′′
1, a

′
2], . . . , [a

′′
p, b] contains at most finite number of

points of discontinuity and hence f is R-integrable on each of these intervals. So there exist

partitions P1, P2, · · · , Pp+1 of [a, a′1], [a
′′
1, a

′
2], . . . , [a

′′
p, b] respectively, such that

U(f, Pk)− L(f, Pk) <
ϵ

2(p+ 1)
, 1 ≤ k ≤ p+ 1.

Let P be the partition of [a, b] consisting of all the points of Pk, 1 ≤ k ≤ p + 1. Then the
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contribution of U(f, P )− L(f, P ) due to the subintervals [a, a′1], [a
′′
1, a

′
2], . . . , [a

′′
p, b] is

p+1∑
k=1

(U(f, Pk)− L(f, Pk)) <

p+1∑
k=1

ϵ

2(p+ 1)

= (p+ 1)
ϵ

2(p+ 1)

=
ϵ

2
. (3)

On the other hand the contribution of U(f, P ) − L(f, P ) due to the subintervals [a′1, a
′′
1],

[a′2, a
′′
2], . . ., [a

′
p, a

′′
p] is

p∑
k=1

(Mk −mk)(a
′′
k − a′k) ≤

p∑
k=1

(M −m)(a′′k − a′k)

= (M −m)

p∑
k=1

(a′′k − a′k)

< (M −m)
ϵ

2(M −m)

=
ϵ

2
. (4)

Using relations (3) and (4) we conclude that U(f, P )− L(f, P ) < ϵ
2 + ϵ

2 = ϵ.

Thus f is R-integrable on [a, b]. ■

1.7 Alternative definition of Riemann Integral

Riemann Integration defined in previous sections is due to Daroux. Here we give the orig-

inal definition provided by Riemann himself and establish the equivalence between the two

definitions. We begin with the following definition:

Definition. 1.32 Let f be a function defined on a closed interval [a, b], P : a = x0 < x1 <

x2 < · · · < xn = b be a partition of [a, b]. Then for any choice of points ξi ∈ [xi−1, xi], 1 ≤
i ≤ n, the sum

∑n
i=1 f(ξi)(xi − xi−1) is called a Riemann sum of f .

It immediately follows that for any partition P : a = x0 < x1 < x2 < · · · < xn = b and any

choice of points ξi ∈ [xi−1, xi], L(f, P ) ≤
∑n

i=1 f(ξi)(xi − xi−1) ≤ U(f, P ).

Definition. 1.33 A function f defined on a closed interval [a, b] is called (R-)integrable if

there exists a real number I satisfying the following property: For every ϵ > 0 there exists

a δ > 0 such that for every partition P : a = x0 < x1 < x2 < · · · < xn = b of [a, b] with

||P || < δ and for every choice of points ξi ∈ [xi−1, xi], 1 ≤ i ≤ n,∣∣∣∣∣
n∑

i=1

f(ξi)(xi − xi−1)− I

∣∣∣∣∣ < ϵ.
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The number I is called integral of f over [a, b] and is denoted by
∫ b
a f(x) dx.

1.7.1 Equivalence of the two definitions:

(A) Assume that f is R-integrable in the sense of Darboux.

Then
∫ b
a f(x) dx =

∫ b̄
a f(x) dx =

∫ b
a f(x) dx. Let ϵ > 0 be given. Then by Darboux’s Theorem

there exists δ > 0 such that for all partition P : a = x0 < x1 < x2 < · · · < xn = b with

||P || < δ, ∫ b

a
f(x) dx− ϵ < L(f, P ) and U(f, P ) < ϵ+

∫ b̄

a
f(x) dx,

from which it follows that,∫ b

a
f(x) dx− ϵ < L(f, P ) ≤ U(f, P ) <

∫ b

a
f(x) dx+ ϵ. (a)

Let us choose for i = 1, 2, . . . , n, ξi ∈ [xi−1, xi] arbitrarily, thenmi ≤ f(ξi) ≤ Mi for 1 ≤ i ≤ n,

where mi,Mi have usual meaning. Thus

L(f, P ) ≤
n∑

i=1

f(ξi)(xi − xi−1) ≤ U(f, P ).

By using (a) we have∫ b

a
f(x) dx− ϵ <

n∑
i=1

f(ξi)(xi − xi−1) <

∫ b

a
f(x) dx+ ϵ,

i.e., ∣∣∣∣∣
n∑

i=1

f(ξi)(xi − xi−1)− I

∣∣∣∣∣ < ϵ.

where I =
∫ b
a f(x) dx. Thus f is integrable in the sense of Riemann.

(B) Assume that f is integrable in the sense of Riemann.

First we shall show that f is bounded in [a, b]. If possible suppose that f is not bounded.

Choose ϵ = 1. Then there exists δ > 0 such that for any partition P : a = x0 < x1 <

x2 < · · · < xn = b of [a, b] with ||P || < δ and for any choice of points ξi ∈ [xi−1, xi], 1 ≤
i ≤ n, |

∑n
i=1 f(ξi)(xi − xi−1) − I| < 1, i.e., I − 1 <

∑n
i=1 f(ξi)(xi − xi−1) < I + 1, i.e.,

|
∑n

i=1 f(ξi)(xi − xi−1)| < |I| + 1. Now f , being unbounded on [a, b], is unbounded on at

least one interval [xk−1, xk], 1 ≤ k ≤ n. We keep ξi fixed for i ̸= k and choose ξk such that

|
∑n

i=1 f(ξi)(xi − xi−1)| > |I|+ 1. This is a contradiction. Thus f is bounded on [a, b].

Now choose any ϵ > 0. Then there exists δ > 0 such that for any partition P : a = x0 < x1 <

x2 < · · · < xn = b of [a, b] with ||P || < δ and for any choice of points ξi ∈ [xi−1, xi], 1 ≤ i ≤ n,

I − ϵ

2
<

n∑
i=1

f(ξi)(xi − xi−1) < I +
ϵ

2
. (1)
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Let Mi = sup{f(x) : xi−1 ≤ x ≤ xi} and mi = inf{f(x) : xi−1 ≤ x ≤ xi}, 1 ≤ i ≤ n.

Then there exists αi, βi ∈ [xi−1, xi], 1 ≤ i ≤ n, such that f(αi) − ϵ
2(b−a) < mi and Mi <

f(βi) +
ϵ

2(b−a) . Also mi ≤ f(αi) ≤ Mi and mi ≤ f(βi) ≤ Mi. Thus

n∑
i=1

f(αi)(xi − xi−1) <
n∑

i=1

(
mi +

ϵ

2(b− a)

)
(xi − xi−1)

=
n∑

i=1

mi(xi − xi−1) +
ϵ

2(b− a)

n∑
i=1

(xi − xi−1)

= L(f, P ) +
ϵ

2
.

Similarly we can show that

n∑
i=1

f(βi)(xi − xi−1) > U(f, P )− ϵ

2
.

Since the relation (1) is true for any choice of ξi ∈ [xi−1, xi], in particular taking ξi = αi and

ξi = βi respectively and using the above relations we get

I − ϵ

2
<

n∑
i=1

f(αi)(xi − xi−1) < L(f, P ) +
ϵ

2

and

U(f, P )− ϵ

2
<

n∑
i=1

f(βi)(xi − xi−1) < I +
ϵ

2
.

i.e.,

I − ϵ < L(f, P ) ≤ U(f, P ) < I + ϵ.

Since L(f, P ) ≤
∫ b
a f(x) dx ≤

∫ b̄
a f(x) dx ≤ U(f, P ), from the above relation we have

I − ϵ <

∫ b

a
f(x) dx ≤

∫ b̄

a
f(x) dx < I + ϵ (2)

which implies that

0 ≤
∫ b̄

a
f(x) dx−

∫ b

a
f(x) dx < 2ϵ.

Since this is true for any ϵ > 0, it follows that∫ b̄

a
f(x) dx =

∫ b

a
f(x) dx.

Thus f is integrable in the sense of Darboux. Let the integral be
∫ b
a f(x) dx. Then∫ b̄

a
f(x) dx =

∫ b

a
f(x) dx =

∫ b

a
f(x) dx. (3)
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Then using (2) and (3) we have

I − ϵ <

∫ b

a
f(x) dx < I + ϵ.

Since this is true for any ϵ > 0, we have I =
∫ b
a f(x) dx.

This completes the proof. ■

1.8 Properties of Riemann Integral

Theorem. 1.34 If f is integrable over [a, b] and k is any constant, then kf is also integrable

over [a, b] and
∫ b
a kf(x) dx = k

∫ b
a f(x) dx.

Proof. If k = 0 then kf is constant function and hence integrable.

Assume that k ̸= 0. Let ϵ > 0 be given. Then, since f is integrable, there exists a partition

P : a = x0 < x1 < x2 < · · · < xn = b of [a, b] such that U(f, P ) − L(f, P ) < ϵ/|k|. Let

Mi = sup{f(x) : xi−1 ≤ x ≤ xi}, mi = inf{f(x) : xi−1 ≤ x ≤ xi}, M ′
i = sup{kf(x) : xi−1 ≤

x ≤ xi}, m′
i = inf{kf(x) : xi−1 ≤ x ≤ xi}, 1 ≤ i ≤ n.

Case-I: Assume that k < 0. Then M ′
i = kmi and m′

i = kMi. Therefore,

U(kf, P ) =
n∑

i=1

M ′
i(xi − xi−1) = k

n∑
i=1

mi(xi − xi−1) = kL(f, P )

and

L(kf, P ) =
n∑

i=1

m′
i(xi − xi−1) = k

n∑
i=1

Mi(xi − xi−1) = kU(f, P ).

Thus U(kf, P ) − L(kf, P ) = k(L(f, P ) − U(f, P )) < k(− ϵ
|k|) = ϵ, since k < 0. Thus kf is

integrable over [a, b].

Case-II: Assume that k > 0. Then M ′
i = kMi and m′

i = kmi. Therefore,

U(kf, P ) =
n∑

i=1

M ′
i(xi − xi−1) = k

n∑
i=1

Mi(xi − xi−1) = kU(f, P )

and

L(kf, P ) =
n∑

i=1

m′
i(xi − xi−1) = k

n∑
i=1

mi(xi − xi−1) = kL(f, P ).

Thus U(kf, P ) − L(kf, P ) = k(U(f, P ) − L(f, P )) < k( ϵ
|k|) = ϵ. Thus kf is integrable over

[a, b].

Theorem. 1.35 A bounded function f is integrable over [a, b] if and only if for any c, a < c <

b, f is integrable over [a, c] and [c, b]. In the either case
∫ b
a f(x) dx =

∫ c
a f(x) dx+

∫ b
c f(x) dx.

Proof. Assume that f is R-integrable in [a, b]. Let a < c < b. To show that f is R-

integrable in [a, c] and [c, b] and
∫ b
a f(x) dx =

∫ c
a f(x) dx +

∫ b
c f(x) dx. Let ϵ > 0 be given.
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Then the integrability of f over [a, b] implies that there exists a partition P of [a, b] such

that U(f, P ) − L(f, P ) < ϵ. Let P ∗ = P ∪ {c}. Then P ∗ is a partition of [a, b] and is a

refinement of P . So L(f, P ) ≤ L(f, P ∗) ≤ U(f, P ∗) ≤ U(f, P ), i.e., U(f, P ∗) − L(f, P ∗) ≤
U(f, P ) − L(f, P ) < ϵ. Let P1 and P2 be the partitions of [a.c] and [c, b] respectively such

that P ∗ = P1 ∪P2. Then U(f, P ∗) = U(f, P1)+U(f, P2) and L(f, P ∗) = L(f, P1)+L(f, P2).

So,

U(f, P1)− L(f, P1) + U(f, P2)− L(f, P2) = U(f, P ∗)− L(f, P ∗) < ϵ.

Thus

U(f, P1)− L(f, P1) < ϵ and U(f, P2)− L(f, P2) < ϵ

since U(f, Pi)− L(f, Pi) > 0 for i = 1, 2.

This shows that f is R-integrable over [a, c] and [c, b]. Also since U(f, P ∗) = U(f, P1) +

U(f, P2), taking infimum on both sides we get
∫ b̄
a f(x) dx =

∫ c̄
a f(x) dx +

∫ b̄
c f(x) dx, i.e.,∫ b

a f(x) dx =
∫ c
a f(x) dx+

∫ b
c f(x) dx.

Conversely assume that f is R-integrable over [a, c] and [c, b]. Let ϵ.0 be arbitrary. Then there

exist partitions P1 and P2 of [a, c] and [c, b] respectively such that U(f, Pi)−L(f, Pi) < ϵ/2 for

i = 1, 2. Let P = P1 ∪P2. Then P is a partition of [a, b]. Also U(f, P ) = U(f, P1)+U(f, P2)

and L(f, P ) = L(f, P1) + L(f, P2). Thus

U(f, P )− L(f, P ) = U(f, P1)− L(f, P1) + U(f, P2)− L(f, P2) < ϵ/2 + ϵ/2 = ϵ.

This shows that f is R-integrable over [a, b]. Also by taking infimum on both sides of

U(f, P ) = U(f, P1) +U(f, P2) we get
∫ b̄
a f(x) dx =

∫ c̄
a f(x) dx+

∫ b̄
c f(x) dx, i.e.,

∫ b
a f(x) dx =∫ c

a f(x) dx+
∫ b
c f(x) dx.

This completes the proof. ■

Theorem. 1.36 If f and g are integrable over [a, b] then f ± g are also integrable over [a, b]

and
∫ b
a (f ± g)(x) dx =

∫ b
a f(x) dx±

∫ b
a g(x) dx.

Proof. Assume that f and g are R-integrable over [a, b]. Let ϵ > 0 be any given real number.

Then there exist partitions P1 and P2 of [a, b] such that

U(f, P1)− L(f, P1) < ϵ/2 and U(g, P2)− L(g, P2) < ϵ/2.

Let P = P1 ∪ P2. Then P is a refinement of both P1 and P2. So,

U(f, P )− L(f, P ) < U(f, P1)− L(f, P1) < ϵ/2

U(g, P )− L(g, P ) < U(g, P2)− L(g, P2) < ϵ/2.
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Let P := a = x0 < x1 < x2 < · · · < xn = b. For 1 ≤ r ≤ n we define

M ′
r = sup{f(x) : xr−1 ≤ x ≤ x4} and m′

r = inf{f(x) : xr−1 ≤ x ≤ x4}

M ′′
r = sup{g(x) : xr−1 ≤ x ≤ x4} and m′′

r = inf{g(x) : xr−1 ≤ x ≤ x4}

Mr = sup{(f + g)(x) : xr−1 ≤ x ≤ x4} and mr = inf{(f + g)(x) : xr−1 ≤ x ≤ x4}.

Then obviously Mr ≤ M ′
r +M ′′

r and mr ≥ m′
r +m′′

r for 1 ≤ r ≤ n. Thus,

∫ b̄

a
(f + g)(x) dx ≤ U(f + g, P ) =

n∑
r=1

Mr(xr − xr−1)

≤
n∑

r=1

(M ′
r +M ′′

r )(xr − xr−1)

=
n∑

r=1

M ′
r(xr − xr−1) +

n∑
r=1

M ′′
r (xr − xr−1)

= U(f, P ) + U(g, P )

and ∫ b

a
(f + g)(x) dx ≥ L(f + g, P ) =

n∑
r=1

mr(xr − xr−1)

≥
n∑

r=1

(m′
r +m′′

r)(xr − xr−1)

=

n∑
r=1

m′
r(xr − xr−1) +

n∑
r=1

m′′
r(xr − xr−1)

= L(f, P ) + L(g, P ).

Thus ∫ b̄

a
(f + g)(x) dx−

∫ b

a
(f + g)(x) dx ≤ (U(f, P ) + U(g, P ))− (L(f, P ) + L(g, P ))

= (U(f, P )− L(f, P )) + (U(g, P ))− L(g, P ))

< ϵ/2 + ϵ/2 = ϵ

i.e.,
∫ b̄
a (f + g)(x) dx <

∫ b
a (f + g)(x) dx+ ϵ. Since this is true for every ϵ > 0 we get

∫ b̄

a
(f + g)(x) dx ≤

∫ b

a
(f + g)(x) dx.

On the other hand it is always true that∫ b

a
(f + g)(x) dx ≤

∫ b̄

a
(f + g)(x) dx.
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Combining the above two relations,∫ b̄

a
(f + g)(x) dx =

∫ b̄

a
(f + g)(x) dx.

i.e., f + g is R-integrable over [a, b].

Also taking limit as ||P || → 0 on both sides of the relations,

U(f + g, P ) ≤ U(f, P ) + U(g, P )

L(f + g, P ) ≥ L(f, P ) + L(g, P )

we get∫ b̄

a
(f + g)(x) dx ≤

∫ b̄

a
f(x) dx+

∫ b̄

a
g(x) dx∫ b̄

a
(f + g)(x) dx ≥

∫ b̄

a
f(x) dx+

∫ b̄

a
g(x) dx

i.e., ∫ b

a
(f + g)(x) dx ≤

∫ b

a
f(x) dx+

∫ b

a
g(x) dx∫ b

a
(f + g)(x) dx ≥

∫ b

a
f(x) dx+

∫ b

a
g(x) dx.

Hence,∫ b

a
(f + g)(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx

This completes the proof. ■

Theorem. 1.37 If f and g are integrable over [a, b] then fg is also integrable over [a, b].

Proof. Since f and g are R-integrable, they are bounded. So there exists M > 0 such that

∀ x ∈ [a, b], |f(x)| < M, |g(x)| < M . Then for any x ∈ [a, b], |(fg)(x)| = |f(x) g(x)| =
|f(x)| |g(x)| < M2. Thus fg is also bounded.

Let ϵ > 0 be any real. The integrability of f and g implies that there exist partition P1 and

P2 of [a, b] such that

U(f, P1)− L(f, P1) <
ϵ

2M
and U(g, P2)− L(g, P2) <

ϵ

2M
.

Let P be a partition of [a, b] which is a refinement of both P1 and P2. Then

U(f, P )− L(f, P ) ≤ U(f, P1)− L(f, P1) <
ϵ

2M

U(g, P )− L(g, P ) ≤ U(g, P2)− L(g, P2) <
ϵ

2M
.
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Let P : a = x0 < x1 < x2 < · · · < xn = b. For 1 ≤ r ≤ n we define,

Mr = sup{(fg)(x) : x ∈ [xr−1, xr]} mr = inf{(fg)(x) : x ∈ [xr−1, xr]}

M ′
r = sup{f(x) : x ∈ [xr−1, xr]} m′

r = inf{f(x) : x ∈ [xr−1, xr]}

M ′′
r = sup{g(x) : x ∈ [xr−1, xr]} m′′

r = inf{g(x) : x ∈ [xr−1, xr]}.

Now for any x, y ∈ [xr−1, xr], 1 ≤ r ≤ n, we have,

|(fg)(x)− (fg)(y)| = |f(x)g(x)− f(y)g(y)|

= |f(x)g(x)− f(x)g(y) + f(x)g(y)− f(y)g(y)|

≤ |f(x)| |g(x)− g(y)|+ |g(y)| |f(x)− f(y)|

≤ M(M ′′
r −m′′

r) +M(M ′
r −m′

r).

Thus Mr −mr ≤ M(M ′′
r −m′′

r) +M(M ′
r −m′

r). Multiplying both sides by δr = (xr − xr−1)

and taking summation from r = 1 to n we get,

n∑
r=1

(Mr −mr)δr ≤ M
n∑

r=1

(M ′′
r −m′′

r)δr +M
n∑

r=1

(M ′
r −m′

r)δr

i.e., U(fg, P )− L(fg, P ) ≤ M{U(g, P )− L(g, P )}+M{U(f, P )− L(f, P )}

< M.
ϵ

2M
+M

ϵ

2M
= ϵ.

Thus fg is R-integrable. ■

Theorem. 1.38 If f and g are R-integrable over [a, b] and there exists k > 0 such the

|g(x)| ≥ k ∀x ∈ [a, b], then f
g is R-integrable over [a, b].

Proof. Since f is integrable over [a, b] it is bounded there, so there exists M > 0 such that

|f(x)| ≤ M ∀x in [a, b]. Also |g(x)| ≥ k ∀x ∈ [a, b]. Thus
∣∣∣fg (x)∣∣∣ = |f(x)|

|g(x)| ≤ M
k . Thus f

g is

bounded.

Since f, g are R-integrable there exists partitions P1, P2 of [a, b] such that

U(f, P1)− L(f, P1) <
ϵ

2M
k2 and U(g, P2)− L(g, P2) <

ϵ

2
k.

Let P be a partition of [a, b] which is a refinement of both P1 and P2. Then

U(f, P )− L(f, P ) <
ϵ

2M
k2 and U(g, P )− L(g, P ) <

ϵ

2
k.

Let P : a = x0 < x1 < x2 · · · < xn = b. We define

Mr = sup{(f/g)(x) : x ∈ [xr−1, xr]} mr = inf{(f/g)(x) : x ∈ [xr−1, xr]}

M ′
r = sup{f(x) : x ∈ [xr−1, xr]} m′

r = inf{f(x) : x ∈ [xr−1, xr]}

M ′′
r = sup{g(x) : x ∈ [xr−1, xr]} m′′

r = inf{g(x) : x ∈ [xr−1, xr]}.
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Now for 1 ≤ r ≤ n, for x, y ∈ [xr−1, xr],∣∣∣∣fg (x)− f

g
(y)

∣∣∣∣ =

∣∣∣∣f(x)g(x)
− f(y)

g(y)

∣∣∣∣ = ∣∣∣∣f(x)g(y)− g(x)f(y)

g(x)g(y)

∣∣∣∣
=

∣∣∣∣f(x)g(y)− f(x)g(x) + f(x)g(x)− g(x)f(y)

g(x)g(y)

∣∣∣∣
≤ |f(x)||g(y)− g(x)|+ |g(x)||f(x)− f(y)|

|g(x)||g(y)|

=

∣∣∣∣f(x)g(x)

1

g(y)

∣∣∣∣ |g(y)− g(x)|+
∣∣∣∣ 1

g(y)

∣∣∣∣ |f(x)− f(y)|

<
M

k

1

k
(M ′′

r −m′′
r) +

1

k
(M ′

r −m′
r).

Since this is true for all x, y in [xr−1, xr],

Mr −mr ≤ M

k

1

k
(M ′′

r −m′′
r) +

1

k
(M ′

r −m′
r).

Multiplying both sides by ∆r = (xr − xr−1) and taking summation from r = 1 to n we get,

n∑
r=1

(Mr −mr)∆r ≤ M

k2

n∑
r=1

(M ′′
r −m′′

r)∆r +
1

k

n∑
r=1

(M ′
r −m′

r)∆r

U(
f

g
, P )− L(

f

g
, P ) ≤ M

k2
(U(g, P )− L(g, P )) +

1

k
(U(f, P )− L(f, P ))

<
M

k2
ϵ

2M
k2 +

1

k

ϵ

2
k

=
ϵ

2
+

ϵ

2
= ϵ.

Thus f
g is R-integrable over [a, b]. ■

Theorem. 1.39 If f is R-integrable over [a, b] then |f | is also R-integrable over [a, b] and∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)|dx.

Proof. Since f is bounded, there exists k > 0 such that −k ≤ f(x) ≤ k, ∀x ∈ [a, b]. Thus

|f(x)| ≤ k ∀x ∈ [a, b], i.e., |f |(x) ≤ k, ∀x ∈ [a, b]. Thus |f | is bounded.

Let ϵ > 0 be given. Since f is integrable over [a, b] there exists a partition P : a = x0 < x1 <

x2 < · · · < xn = b of [a, b] such that U(f, P )− L(f, P ) < ϵ. Let

Mr = sup{f(x) : x ∈ [xr−1, xr]} mr = inf{f(x) : x ∈ [xr−1, xr]}

M ′
r = sup{|f |(x) : x ∈ [xr−1, xr]} m′

r = inf{|f |(x) : x ∈ [xr−1, xr]}.

Now for 1 ≤ r ≤ n, for any x, y ∈ [xr−1, xr],

| |f |(x)− |f |(y) | = | |f(x)| − |f(y)| | ≤ |f(x)− f(y)|
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which implies that M ′
r −m′

r ≤ Mr −mr, 1 ≤ r ≤ n.

Thus

U(|f |, P )− L(|f |, P ) =

n∑
r=1

(M ′
r −m′

r)(xr − xr−1) ≤
n∑

r=1

(Mr −mr)(xr − xr−1)

= U(f, P )− L(f, P ) < ϵ.

This shows that |f | is R-integrable.

Also for any x in [a, b],

−|f(x)| ≤ f(x) ≤ |f(x)| ⇒
∫ b

a
−|f(x)|dx ≤

∫ b

a
f(x) dx ≤

∫ b

a
|f(x)| dx

⇒ −
∫ b

a
|f(x)| dx ≤

∫ b

a
f(x) dx ≤

∫ b

a
|f(x)|dx.

Thus

∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f |(x) dx. ■

The converse of the above theorem is not true.

Example. 1.40 Let us define f : [0, 1] → R by f(x) = 1 when x is rational and f(x) = −1

when x is irrational. Then obviously f is not integrable on [0, 1], however |f |(x) = 1 for all

x in [0, 1] which is constant and hence integral.

1.9 Fundamental Theorem of Integral Calculus

In practice, when we integrate a function f over an interval [a, b], we first find an anti-

derivative F of the function f such that F ′ = f on [a, b]. Then we take F (b) − F (a) as the

value of the integral
∫ b
a f(x) dx. The theory behind this practice is the fundamental theorem

if integral calculus.

Theorem. 1.41 (Fundamental Theorem of Integral Calculus) Let f : [a, b] → R
be an integrable function and F : [a, b] → R be a function having the following properties:

1. F is continuous on [a, b]

2. F is differentiable on (a, b) and F ′(x) = f(x)∀x ∈ (a, b).

Then

∫ b

a
f(x) dx = F (b)− F (a).

Proof. Let ϵ > 0 be arbitrary. Since f is integrable, there exists a partition P : a = x0 <

x1 < x2 < · · · < xn = b such that for any choice of ξr ∈ [xr−1, xr],∣∣∣∣∣
n∑

r=1

f(ξr)(xr − xr−1)−
∫ b

a
f(x) dx

∣∣∣∣∣ < ϵ. (5)
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Also we can write by using Lagrange’s Mean Value Theorem,

F (b)− F (a) =
n∑

r=1

(F (xr)− F (xr−1)) (6)

=
n∑

r=1

(xr − xr−1)F
′(ξr), for some ξr ∈ (xr−1, xr), 1 ≤ r ≤ n

=

n∑
r=1

(xr − xr−1)f(ξr). since F ′ = f on (a, b). (7)

Thus by 5 and 7, it follows that

∣∣∣∣F (b)− F (a)−
∫ b

a
f(x) dx

∣∣∣∣ < ϵ. Since ϵ > 0 is arbitrary,

we have

F (b)− F (a) =

∫ b

a
f(x) dx.

This completes the proof. ■

1.10 Worked out problems

1. If f : [a, b] → R be a bounded function prove that f is Riemann integrable over [a, b] if

and only if for any ϵ > 0 there is a partition P of [a, b] such that U(P, f)−L(P, f) < ϵ.

2. Give an example with proper justification of a Riemann integrable function which has

no primitive.

3. Prove that f : [0, 3] → R defined by f(x) = x+ [x] is integrable.

4. Give an example, with proper justifications, of a discontinuous function which has a

primitive.

5. If a function f : [a, b] → R be integrable and f(x) ≥ 0 for x ∈ [a, b] and there exists a

point c ∈ [a, b], such that f is continuous at c with f(c) > 0, then prove that
∫ b
a f > 0.

6. Let f be continuous on [a, b] and for each α, β, a ≤ α < β < b,∫ β

α
f(x) dx = 0.

Prove that f is identically zero on [a, b].

7. If a function f : [a, b] → R be bounded and for every c ∈ (a, b), f is integrable on [c, b],

then prove that f is integrable on [a, b].

8. Give an example of a function f : [0, 1] → R which is integrable on [c, 1], 0 < c < 1 but

not integrable on [0, 1].
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9. Find the lower and upper integrals of the function.

f(x) = 1, x ∈ Q ∩ [0, 1]

= 0, x ∈ (R−Q) ∩ [0, 1]

10. For bounded function f defined on an interval [a, b] and any two partitions P1, P2 of

[a, b] show that L(f, P1) ≤ U(f, P2).

11. Prove that a continuous function f defined on a closed interval [a, b] is integrable in the

sense of Riemann.

12. A function f : [0, 1] → R is defined by

f(x) =
1

3n
,

1

3n+1
< x ≤ 1

3n
, n = 0, 1, 2, . . .

= 0, x = 0.

Show that f is integrable in the sense of Riemann and
∫ 1
0 f(x) dx = 3

4

13. Using Mean Value Theorem of Integral Calculus prove that

π3

24
≤

∫ π

0

x3

5 + 3 cosx
dx ≤ π3

6
.
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2 Improper Integral

So far we have studied the theory of integration, we have assumed that the following conditions

are satisfied:

1. the integrand function is bounded over the interval of integration,

2. the interval of integration is bounded.

When any one or both of the above conditions are not satisfied, we still try to integrate the

function by using the concept of limit. An integral of this type, when exists, is known as

improper integral. There are two types of improper integrals:

1. When the range of integration is finite but the integrand has an infinite discontinuity

at any of the end points or in any interior point. This can be of the form:

(a)
∫ b
a f(x) dx where f has an infinite discontinuity at x = a, for example,

∫ 1
0

dx
x2 .

(b)
∫ b
a f(x) dx where f has an infinite discontinuity at x = b, for example,

∫ 2
1

dx
(x−2)3

.

(c)
∫ b
a f(x) dx where f has an infinite discontinuity at x = c where c is a point lying

between a and b. For example,
∫ 2
0

dx
(x−1)4

.

(d)
∫ b
a f(x) dx where f has a finite number of infinite discontinuities, say, at x =

c1, c2, . . . , ck where a ≤ c1 < c2 < · · · < ck ≤ b. For example,
∫ 2π
0

sin 2x
sin 2x−cos 2xdx.

Here the integrand has infinite discontinuities at π/8, 5π/8, 9π/8 and at 13π/8.

2. When the range of integration is infinite, the integrand being a bounded function.

The combination of the above two types is also possible, i.e., when the range of integration

is infinite and also the integrand is an unbounded function.

2.1 When range of integration is finite:

We consider the improper integral

∫ b

a
f(x) dx when f(x) has a point of infinite discontinuity

only at x = a. We take the integral

∫ b

a+ϵ
f(x) dx where 0 < ϵ < b − a. This is a proper

integral (as there is no other point of infinite discontinuity of f in the range). Suppose that∫ b

a+ϵ
f(x) dx exists and equal to ϕ(ϵ). If lim

ϵ→0+0
ϕ(ϵ) exists and is finite, say equal to l, we say

the improper integral

∫ b

a
f(x) dx exists or converges at x = a and write as

∫ b

a
f(x) dx = lim

ϵ→0+

∫ b

a+ϵ
f(x) dx = l.
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Again, if x = b be the only point of infinite discontinuity of f in the finite integral [a, b], then∫ b

a
f(x) dx exists or converges at x = b if lim

ϵ→0+

∫ b−ϵ

a
f(x) dx exists, 0 < ϵ < b− a. We then

write,∫ b

a
f(x) dx = lim

ϵ→0+

∫ b−ϵ

a
f(x) dx.

Example. 2.1

∫ 1

0

dx

x2
. Here f(x) = 1

x2 has only one point of infinite discontinuity at x = 0.

Then,

∫ 1

0

dx

x2
= lim

ϵ→0+

∫ 1

ϵ

dx

x2
= lim

ϵ→0+

[
−1

x

]1
ϵ

= lim
ϵ→0+

{
1

ϵ
− 1

}
= ∞.

Thus the integral

∫ 1

0

dx

x2
does not converge.

Example. 2.2

∫ 1

0

dx√
1− x2

. Here f(x) = 1√
1−x2

. x = 1 is a point of infinite discontinuity

of f . Then∫ 1

0

dx√
1− x2

= lim
ϵ→0+

∫ 1−ϵ

0

dx√
1− x2

= lim
ϵ→0+

[
sin−1 x

]1−ϵ

0

= lim
ϵ→0+

{
sin−1(1− ϵ)− sin−1 0

}
= sin−1 1 =

π

2

When both of a and b are the only points of infinite discontinuity of f in the finite range [a, b],

we take any point c where a < c < b and consider the integrals

∫ c

a
f(x) dx and

∫ b

c
f(x) dx.

The integral

∫ b

a
f(x) dx converges if

∫ c

a
f(x) dx and

∫ b

c
f(x) dx converge at x = a and x = b

respectively.

It is to be noted that the result is independent of the choice of the point x = c. (Proof is

beyond the scope of this note).

Example. 2.3

∫ 1

0

dx√
x(1− x)

. Here f(x) = 1√
x(1−x)

, both of x = 0 and x = 1 are the points

of infinite discontinuity of f . We take c = 1
2 and consider the integrals

∫ 1
2

0

dx√
x(1− x)

and∫ 1

1
2

dx√
x(1− x)

. Now,

∫ 1
2

0

dx√
x(1− x)

= lim
ϵ→0+

∫ 1
2

ϵ

dx√
x(1− x)

= lim
ϵ→0+

∫ 1
2

ϵ

dx√
x− x2)
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= lim
ϵ→0+

∫ 1
2

ϵ

dx√
(12)

2 − (x− 1
2)

2
= lim

ϵ→0+

[
sin−1(2x− 1)

] 1
2

ϵ

= lim
ϵ→0+

{
sin−1 0− sin−1(2ϵ− 1)

}
= − sin−1(−1) = sin−1 1 =

π

2
.

Thus the integral

∫ 1
2

0

dx√
x(1− x)

converges to π
2 .

Also, ∫ 1

1
2

dx√
x(1− x)

= lim
ϵ→0+

∫ 1−ϵ

1
2

dx√
x(1− x)

= lim
ϵ→0+

∫ 1−ϵ

1
2

dx√
x− x2)

= lim
ϵ→0+

∫ 1−ϵ

1
2

dx√
(12)

2 − (x− 1
2)

2
= lim

ϵ→0+

[
sin−1(2x− 1)

]1−ϵ
1
2

= lim
ϵ→0+

{
sin−1(1− 2ϵ)− sin−1 0

}
= sin−1 1 =

π

2
.

Thus the integral

∫ 1

1
2

dx√
x(1− x)

converges to π
2 . Hence,

∫ 1

0

dx√
x(1− x)

converges and

∫ 1

0

dx√
x(1− x)

=

∫ 1
2

0

dx√
x(1− x)

+

∫ 1

1
2

dx√
x(1− x)

=
π

2
+

π

2
= π.

2.2 When range of integration is infinite:

Consider the integral

∫ ∞

a
f(x) dx. Let f be bounded and integrable over [a,X] for every

X ≥ a. Then

∫ X

a
f(x) dx exists and equal to, say, ϕ(X). If the limit lim

X→∞
ϕ(X) exists

and finite, say l, then we say that the improper integral

∫ ∞

a
f(x) dx converges with value l.

Therefore,∫ ∞

a
f(x) dx = lim

X→∞

∫ X

a
f(x) dx

Consider the integral

∫ b

−∞
f(x) dx. Let f be bounded and integrable over [X, b] where X ≤ b.

If the limit lim
X→−∞

∫ b

X
f(x) dx exists and has finite value we say that the integral

∫ b

−∞
f(x) dx

converges. We write,∫ b

−∞
f(x) dx = lim

X→∞

∫ b

X
f(x) dx
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Consider the integral

∫ ∞

−∞
f(x) dx. Take any number c and consider the integrals

∫ c

−∞
f(x) dx

and

∫ ∞

c
f(x) dx. If both the integrals Converge, then we say that

∫ ∞

−∞
f(x) dx converges

and write,∫ ∞

−∞
f(x) dx =

∫ c

−∞
f(x) dx+

∫ ∞

c
f(x) dx

= lim
X→−∞

∫ c

X
f(x) dx+ lim

X′→∞

∫ X′

c
f(x) dx.

It is to be noted that the result is independent of the choice of c. (Proof is beyond the scope

of this note).

Example. 2.4 Evaluate

∫ ∞

0

dx

1 + x2
.

∫ ∞

0

dx

1 + x2
= lim

X→∞

∫ X

0

dx

1 + x2
= lim

X→∞

[
tan−1 x

]X
0

= lim
X→∞

[
tan−1X − tan−1 0

]
= lim

X→∞
tan−1X =

π

4

2.2.1 Problems

(i)

∫ 1

0

dx

1− x
(ii)

∫ ∞

0

x

x2 + 4
dx (iii)

∫ ∞

0

dx

x2 − 1

(vi)

∫ ∞

0

x dx

(1 + x2)2
(v)

∫ ∞

0

dx

(x2 + a2)(x2 + b2)
dx, a, b > 0 (vi)

∫ ∞

−∞

x

x4 + 1
dx

(vii)

∫ ∞

0

dx

x2 + 2x+ 2
(viii)

∫ ∞

0

x2 dx

(x2 + a2)(x2 + b2)
, a, b > 0

Answer: (i) does not converge, (ii) does not converge, (iii) 1
2 log 2, (iv) 1

4 , (v) 0, (vi) π
2ab(a+b) ,

(vii) π
2(a+b) , (viii) Does not converge.

2.3 Tests for Convergence of Improper Integral

We begin with a few useful examples.

Example. 2.5 1. The integral

∫ b

a

dx

(x− a)n
is convergent if n < 1 and is divergent if

n ≥ 1.

The integral is proper if n ≤ 0. for n > 0 and n ̸= 1,∫ b

a

dx

(x− a)n
= lim

ϵ→0+

∫ b

a+ϵ

dx

(x− a)n
= lim

ϵ→0+

[
1

−n+ 1
(x− a)−n+1

]b
a+ϵ

=
1

1− n
· lim
ϵ→0+

[
(b− a)1−n − ϵ1−n

]
.
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When n > 1 then lim
ϵ→0+

ϵ1−n = ∞ and when n < 1 then lim
ϵ→0+

ϵ1−n = 0. Thus,

∫ b

a

dx

(x− a)n
=

1

1− n
· (b− a)1−n if n < 1

= ∞ if n > 1.

For n = 1,∫ b

a

dx

x− a
= lim

ϵ→0+

∫ b

a+ϵ

dx

x− a
= lim

ϵ→0+
[log(x− a)]ba+ϵ

= lim
ϵ→0+

[log(b− a)− log ϵ] = ∞.

Hence the integral

∫ b

a

dx

(x− a)n
is convergent if n < 1 and divergent if n ≥ 1.

2. The integral

∫ ∞

a

dx

xp
, a > 0 is convergent if p > 1 and is divergent if p ≤ 1.

For p ̸= 1 the integral is evaluated as,∫ ∞

a

dx

xp
= lim

X→∞

∫ X

a

dx

xp
=

1

1− p
· lim
X→∞

[
x1−p

]X
a

=
1

1− p
· lim
X→∞

[X1−p − a1−p] = ∞ if p < 1

=
1

p− 1
a1−p if p > 1.

For p = 1 the integral becomes,∫ ∞

a

dx

x
= lim

X→∞

∫ X

a

dx

x
= lim

X→∞
[log x]Xa = lim

X→∞
[logX − log a] = ∞.

Hence the integral is convergent if p > 1 and is divergent if p ≤ 1.

Problem. 2.6 Test the convergence of the integral

∫ b

a

dx

(b− x)n
.

Theorem. 2.7 (Comparison test:) If f and g are two non-negative functions defined on

(a, b], having the only infinite discontinuity at a and f ≤ g on (a, c] for some c, a < c ≤ b,

then (i) if

∫ b

a
g(x) dx is convergent then so is

∫ b

a
f(x) dx, (ii) if

∫ b

a
f(x) dx is divergent then

so is

∫ b

a
g(x) dx.

Proof. Since lim
ϵ→0

∫ b

a+ϵ
f(x) dx = lim

ϵ→0

∫ c

a+ϵ
f(x) dx+

∫ b

c
f(x) dx, and the last integral is proper

one, without any loss of generality we may assume c = b, i.e., f ≤ g on (a, b]. Then for any

ϵ > 0 since 0 ≤ f(x) ≤ g(x) for all x ∈ [a+ ϵ, b], we have

∫ b

a+ϵ
f(x) dx ≤

∫ b

a+ϵ
g(x) dx.
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Hence, (i) when

∫ b

a
g(x) dx is convergent, then lim

ϵ→0+

∫ b

a+ϵ
f(x) dx ≤ lim

ϵ→0+

∫ b

a+ϵ
g(x) dx < ∞.

So

∫ b

a+ϵ
f(x) dx is convergent.

(ii) On the other hand, when

∫ b

a
f(x) dx is divergent then lim

ϵ→0+

∫ b

a+ϵ
f(x) dx = ∞. This

implies that lim
ϵ→0+

∫ b

a+ϵ
g(x) dx = ∞. Thus

∫ b

a
g(x) dx is divergent. ■

In a similar way one can prove the following theorem and hence I omit it and ask the students

to write the proof as an exercise.

Theorem. 2.8 (Comparison test:) If f, g are integrable over [a,X) for all X ≥ a and 0 ≤

f(x) ≤ g(x) for all x ∈ [a,∞) then (i) if

∫ ∞

a
g(x) dx is convergent then so is

∫ ∞

a
f(x) dx

and (ii) if

∫ ∞

a
f(x) dx is divergent then so is

∫ ∞

a
f(x) dx.

Theorem. 2.9 If the functions f, g : (a, b] → R have the only point of infinite discontinuity

at x = a, both f, g are positive on (a, b] such that lim
x→a+

f(x)

g(x)
= l, where 0 < l < ∞, then the

integrals

∫ b

a
f(x) dx and

∫ b

a
g(x) dx either both converge or both diverge.

Proof. Since both f, g are positive, l > 0. Choose ϵ = l
2 . Then there exists δ > 0 such that

a+ δ < b and |f(x)g(x) − l| < ϵ for all x ∈ (a, a+ δ), i.e., l− ϵ < f(x)
g(x) < l+ ϵ for all x ∈ (a, a+ δ).

Since g > 0 and ϵ = l
2 , we have

l

2
· g(x) < f(x) <

3l

2
· g(x) for all x ∈ (a, a+ δ).

Put c = a+ δ. Assume that the integral

∫ b

a
f(x) dx is convergent. This implies that

∫ c

a
f(x) dx is convergent ⇒

∫ c

a

l

2
g(x) dx is convergent

⇒
∫ c

a
g(x) dx is convergent

⇒
∫ c

a
g(x) dx+

∫ b

c
g(x) dx is convergent

⇒
∫ b

a
g(x) dx is convergent.

Also assuming

∫ b

a
f(x) dx is divergent, since

∫ b

c
f(x) dx is a proper integral, we have

∫ c

a
f(x) dx is divergent ⇒

∫ c

a

3l

2
g(x) dx is divergent
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⇒
∫ c

a
g(x) dx is divergent

⇒
∫ c

a
g(x) dx+

∫ b

c
g(x) dx is divergent

⇒
∫ b

a
g(x) dx is divergent.

Hence either both the integrals are convergent or both are divergent. ■

The following theorem is stated without proof and the students are asked to write it by

following the method adopted in the above one.

Theorem. 2.10 If the functions f, g : [a, b) → R have the only point of infinite discontinuity

at x = b, both f, g are positive on [a, b) such that lim
x→b−

f(x)

g(x)
= l, where 0 < l < ∞, then the

integrals

∫ b

a
f(x) dx and

∫ b

a
g(x) dx either both converge or both diverge.

Analogous results are valid for the integrals when the range of integration is infinite and the

integrand has no infinite discontinuity.

Theorem. 2.11 Assume that f, g : [a,∞) → R are positive and has no infinite discontinuity

on its domain, also lim
x→∞

f(x)

g(x)
= l, where 0 < l < ∞. Then the integrals

∫ ∞

a
f(x) dx and∫ ∞

a
g(x) dx are either both convergent or both divergent.

Proof. Since l > 0, choose ϵ > 0 such that l − ϵ > 0. For this ϵ there exists m > a

such that |f(x)g(x) − l| < ϵ whenever x > m. This implies that l − ϵ < f(x)
g(x) < l + ϵ whenever

x > m, i.e., (l − ϵ)g(x) < f(x) < (l + ϵ)g(x) whenever x > m. Since

∫ ∞

a
f(x) dx =∫ m

a
f(x) dx+

∫ ∞

m
f(x) dx and

∫ m

a
f(x) dx is a proper integral, we have

∫ ∞

a
f(x) dx is convergent ⇒

∫ ∞

m
f(x) dx is convergent

⇒
∫ ∞

m
(l − ϵ)g(x) dx is convergent

⇒
∫ ∞

m
g(x) dx is convergent

⇒
∫ ∞

a
g(x) dx is convergent.

On the other hand,∫ ∞

a
f(x) dx is divergent ⇒

∫ ∞

m
f(x) dx is divergent

⇒
∫ ∞

m
(l + ϵ)g(x) dx is divergent
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⇒
∫ ∞

m
g(x) dx is divergent

⇒
∫ ∞

a
g(x) dx is divergent.

Thus, either both are convergent or both are divergent. ■

Analogously one can prove that

Theorem. 2.12 Assume that f, g : (−∞, b] → R are positive and has no infinite discontinu-

ity on its domain, also lim
x→−∞

f(x)

g(x)
= l, where 0 < l < ∞. Then the integrals

∫ b

−∞
f(x) dx

and

∫ b

−∞
g(x) dx are either both convergent or both divergent.

We omit its proof, interested students can do it as an exercise.

Example. 2.13 Test the convergence of the integral

∫ 1

0

dx

x
3
2 (1 + x2)

5
2

.

Here f(x) = 1

x
3
2 (1+x2)

5
2
has only infinite discontinuity at x = 0. Let us take g(x) = 1

x
3
2
, 0 <

x ≤ 1. Then lim
x→0

f(x)

g(x)
= lim

x→0

1

(1 + x2)
5
2

= 1 < ∞. Hence both the integrals
∫ 1
0 f(x) dx

and
∫ 1
0 g(x) dx have the same convergence behaviour. Since the integral

∫ 1

0

dx

x
3
2

is divergent,

(n = 3
2 > 1), the integral

∫ 1

0
f(x) dx is divergent.

Example. 2.14 Test the convergence of the integral

∫ ∞

0

x dx

(1 + x2)3
.

Here f(x) = x
(1+x2)3

has no infinite discontinuity in [0,∞). Counting the degrees in the

numerator and denominator of f we take g(x) = 1
x5 , x > 0. Then

lim
x→∞

f(x)

g(x)
= lim

x→∞

x

(1 + x2)3
x5

1
= lim

x→∞

x6

(1 + x2)3
= lim

x→∞

1

( 1
x2 + 1)3

= 1 < ∞.

Since the integral

∫ ∞

0

1

x5
dx is convergent (p = 5 > 1) it follows that

∫ 1

0
f(x) dx is conver-

gent.

2.4 Beta and Gamma Function

In this section we deal with two improper integrals which have much importance in various

applications of mathematics. They are known as Beta Functions and Gamma Functions.
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2.4.1 Beta Function:

The integral

∫ 1

0
xm−1(1− x)n−1 dx is known as beta function and is denoted by β(m,n).

Theorem. 2.15 The beta function β(m,n) =

∫ 1

0
xm−1(1 − x)n−1 dx is convergent when

m > 0 and n > 0.

Proof. It is obvious that the integral is proper when both m,n ≥ 1. So we have to check

when m < 1 or n < 1 or both. We divide the integral as∫ 1

0
xm−1(1− x)n−1 dx =

∫ 1
2

0
xm−1(1− x)n−1 dx+

∫ 1

1
2

xm−1(1− x)n−1 dx.

When m < 1 the first integrand has an infinite discontinuity at x = 0 and when n < 1 the

second integrand has an infinite discontinuity at x = 1. Let f(x) = xm−1(1−x)n−1, 0 < x < 1.

When m < 1: take g(x) = xm−1. Then lim
x→0+

f(x)

g(x)
= lim

x→0+

xm−1(1− x)n−1

xm−1
= lim

x→0+
(1 −

x)n−1 = 1.

Now,

∫ 1
2

0
g(x) dx =

∫ 1
2

0
xm−1 dx =

∫ 1
2

0

1

x1−m
dx is convergent if 1 − m < 1, i.e., if m > 0.

Hence the integral

∫ 1
2

0
xm−1(1− x)n−1 dx is convergent when m > 0.

When n < 1: take h(x) = (1 − x)n−1. Then lim
x→1−

f(x)

h(x)
= lim

x→1−

xm−1(1− x)n−1

(1− x)n−1
=

lim
x→1−

xm−1 = 1.

Now,

∫ 1

1
2

h(x) dx =

∫ 1

1
2

(1 − x)n−1 dx =

∫ 1

1
2

1

(1− x)1−n
dx is convergent if 1 − n < 1, i.e., if

n > 0. Hence the integral

∫ 1

1
2

xm−1(1− x)n−1 dx is convergent when n > 0.

From the above two, the integral β(m,n) =

∫ 1

0
xm−1(1 − x)n−1 dx is convergent if m > 0

and n > 0. ■

Henceforth, whenever we write β(m,n) we shall assume m > 0 and n > 0, unless stated

otherwise.

2.4.2 Properties of Beta Functions

1. β(m,n) = β(n,m).

Putting x = 1− y, dx = −dy, when x → 0, y → 1 and when x → 1, y → 0, we have,

β(m,n) =

∫ 1

0
xm−1(1− x)n−1 dx =

∫ 0

1
(1− y)m−1yn−1(−dy)
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=

∫ 1

0
yn−1(1− y)m−1dy = β(n,m).

2. β(m,n) = 2

∫ π/2

0
sin2m−1 θ cos2n−1 θ dθ.

Substituting x = sin2 θ, dx = 2 sin θ cos θ dθ. When x → 0 then θ → 0, when x → 1,

θ → π/2. So,

β(m,n) =

∫ 1

0
xm−1(1− x)n−1 dx

=

∫ π/2

0
(sin2 θ)m−1(1− sin2 θ)n−12 sin θ cos θ dθ

= 2

∫ π/2

0
sin2m−1 θ cos2n−1 θ dθ.

3. β(m,n) =

∫ ∞

0

xm−1

(1 + x)m+n
dx.

Take a substitution x = y
1+y . Then dx = 1

(1+y)2
dy and 1 − x = 1

1+y . Also x = y
1+y

gives y = x
1−x , hence when x → 0, y → 0 and when x → 1, y → ∞. Thus the integral

becomes,

β(m,n) =

∫ 1

0
xm−1(1− x)n−1 dx

=

∫ ∞

0

(
y

1 + y

)m−1( 1

1 + y

)n−1 1

(1 + y)2
dy

=

∫ ∞

0

ym−1

(1 + y)m+n
dy.

4. For k > 0, β(m,n) = k

∫ 1

0
xmk−1(1− xk)n−1 dx.

This can be proved by substituting x = yk, k > 0. The students are required to do it.

5. β(m,n) = β(m+ 1, n) + β(m,n+ 1).

β(m,n+ 1) =

∫ 1

0
xm−1(1− x)n dx =

∫ 1

0
xm−1(1− x)n−1(1− x) dx

=

∫ 1

0
xm−1(1− x)n−1 dx−

∫ 1

0
xm(1− x)n−1 dx

= β(m,n)− β(m+ 1, n).

Hence the result.

Example. 2.16 Evaluate β(12 ,
1
2).

β(12 ,
1
2) = 2

∫ π/2

0
sin2.

1
2
−1 θ cos2.

1
2
−1 θ dθ = 2

∫ π/2

0
dθ = 2× π

2
= π.



Department of Mathematics, P R Thakur Govt College 35

Problem. 2.17 Prove that 1. β(m,n + 1) = m
m+n · β(m,n) and 2. β(m + 1, n) =

n
m+n · β(m,n).

2.4.3 Gamma Function:

The improper integral

∫ ∞

0
e−xxn−1 dx is known as Gamma Function and is denoted by Γ(n).

Thus,

Theorem. 2.18 The Gamma Function Γ(n) =

∫ ∞

0
e−xxn−1 dx converges if n > 0.

Proof. The function f(x) = e−xxn−1 has an infinite discontinuity at x = 0 when n < 1. So

we have to check convergence both at x = 0 and at ∞. We write the integral as,

Γ(n) =

∫ ∞

0
e−xxn−1 dx =

∫ 1

0
e−xxn−1 dx+

∫ ∞

1
e−xxn−1 dx.

To check convergence at 0, take g(x) = xn−1. Then lim
x→0+

f(x)

g(x)
= lim

x→0+

e−xxn−1

xn−1
= lim

x→0+
e−x

= 1 < ∞. Also the integral

∫ 1

0
g(x) dx =

∫ 1

0
xn−1 dx =

∫ 1

0

dx

x1−n
is convergent if 1− n < 1,

i.e., if n > 0. Hence the integral

∫ 1

0
e−xxn−1 dx is convergent if n > 0.

We check the convergence at ∞ a little elaborately, in a few steps.

1. First note that

∫ ∞

1
e−kx dx is convergent for any k > 0. One can easily verify this from

definition.

2. For any positive integer n, there exists M > 0 such that e−xxn−1 < e−
1
2
x for all x > M .

To verify this evaluate the limit lim
x→∞

xn−1

e
1
2
x

= 0 [by using L’ Hospital’s rule (∞∞) form].

Hence for taking ϵ = 1 there exists M > 0 such that |xn−1

e
1
2x

− 0| < 1 whenever x > M ,

i.e., xn−1 < e
1
2
x for all x > M . Multiplying both sides by e−x we have e−xxn−1 < e−

1
2
x

for all x > M . By comparison and using item 1 above, we have

∫ ∞

1
e−xxn−1 dx is

convergent whenever n is a positive integer.

3. When n is a real number greater than 1 then [n] is a positive integer and e−xxn−1 <

e−xx[n]. Since the integral

∫ ∞

1
e−xx[n] dx is convergent, by comparison the integral∫ ∞

1
e−xxn−1 dx is convergent for any real number n > 1.

4. When 0 < n < 1, since we have 1 ≤ xn−1 ≤ x for all x > 1, we get 1

e
1
2x

≤

xn−1

e
1
2x

≤ x

e
1
2x

for all x > 1. Since lim
x→∞

1

e
1
2
x

= 0 = lim
x→∞

x

e
1
2
x
, by sandwich rule we
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have lim
x→∞

xn−1

e
1
2
x

= 0. By the method similar to that adopted in item 2 we can prove∫ ∞

1
e−xxn−1 dx is convergent when 0 < n < 1.

Hence the integral Γ(n) =

∫ ∞

0
e−xxn−1 dx is convergent if n > 0. ■

Henceforth, whenever we write Γ(n), we shall assume that n > 0, unless we state otherwise.

2.4.4 Properties of Gamma Function

1. Γ(n+ 1) = nΓ(n).

We have Γ(n+ 1) =

∫ ∞

0
e−xxn dx = lim

X→∞

∫ X

0
e−xxn dx

= lim
X→∞

{[
xn(−e−x)

]X
0
+ n

∫ X

0
e−xxn−1 dx

}
= lim

X→∞

[
−Xne−X + 0

]
+ n lim

X→∞

∫ X

0
e−xxn−1 dx

= lim
X→∞

[
−Xn

eX

]
+ n

∫ ∞

0
e−xxn−1 dx = 0 + nΓ(n).

2. For a positive integer n, Γ(n+ 1) = n!.

Γ(n+ 1) = nΓ(n)

Γ(n) = (n− 1)Γ(n− 1)

...
...

Γ(3) = 2Γ(2)

Γ(2) = 1Γ(1)

Thus Γ(n+1) = n(n−1)(n−2) · · · 3·2·1·Γ(1) = n!·Γ(1). Since Γ(1) =
∫ ∞

0
e−xx1−1 dx =

lim
X→∞

∫ X

0
e−x dx = lim

X→∞

[
−e−x

]X
0

= lim
X→∞

[
− 1

eX
+ 1

]
= 1, it follows that Thus

Γ(n+ 1) = n(n− 1)(n− 2) · · · 3 · 2 · 1 = n!.

3. For k > 0, Γ(n) = k

∫ ∞

0
e−xk

xkn−1 dx.

Put x = yk, k > 0. Then when x → 0, y → 0 and when x → ∞, y → ∞. Also

dx = kyk−1 dy. After this substitution the integral becomes,

Γ(n) =

∫ ∞

0
e−xxn−1 dx =

∫ ∞

0
e−yk(yk)n−1kyk−1 dy

= k

∫ ∞

0
e−ykykn−1 dy.

Hence the result.
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4. For 0 < n < 1, Γ(n)Γ(1− n) = π
sinnπ .

Proof of this result is omitted as it involves topics beyond the curriculum.

2.4.5 Relation between Beta Function and Gamma Function

Theorem. 2.19 For m,n > 0, β(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
.

Proof. We know for k > 0, Γ(n) = k

∫ ∞

0
e−xk

xkn−1 dx. Hence taking k = 2 we have

Γ(n)Γ(m) = 2

∫ ∞

0
e−x2

x2n−1 dx · 2
∫ ∞

0
e−y2y2m−1 dy

= 4

∫ ∞

0

∫ ∞

0
e−(x2+y2)x2n−1y2m−1 dx dy

Take x = r cos θ and y = r sin θ, 0 < r < ∞, 0 ≤ θ ≤ π
2 and ∂(x,y)

∂(r,θ) = r, the integral becomes,

Γ(n)Γ(m) = 4

∫ ∞

r=0

∫ π
2

θ=0
e−r2r2n−1 cos2n−1 θ r2m−1 sin2m−1 θ rdθdr

= 4

∫ ∞

r=0

∫ π
2

θ=0
e−r2r2(n+m)−1 cos2n−1 θ sin2m−1 θ dθdr

= 2

∫ ∞

0
e−r2r2(n+m)−1 dr · 2

∫ π
2

0
cos2n−1 θ sin2m−1 θ dθ

= Γ(n+m) · β(n,m).

Hence β(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
.

Example. 2.20 1. Find Γ(12).

From the relation between beta and gamma functions it follows that

β

(
1

2
,
1

2

)
=

Γ
(
1
2

)
Γ
(
1
2

)
Γ
(
1
2 + 1

2

) =

(
Γ(12)

)2
Γ(1)

=

(
Γ(

1

2
)

)2

.

Since β(12 ,
1
2) = π, therefore,

(
Γ
(
1
2

))2
= π. Hence Γ

(
1
2

)
=

√
π.

2. Establish the relation

∫ π/2

0
sinp θ cosq θ dθ =

β(p+1
2 , q+1

2 )

2
=

Γ(p+1
2 )Γ( q+1

2 )

2Γ(p+q+2
2 )

, p, q >

−1.

We know, β(m,n) = 2

∫ π/2

0
sin2m−1 θ cos2n−1 θ dθ.
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Putting 2m− 1 = p, 2n− 1 = q, m = p+1
2 , n = q+1

2 . When m,n > 0, then p > −1, q >

−1. So we get

2

∫ π/2

0
sinp θ cosq θ dθ = β(

p+ 1

2
,
q + 1

2
),

Again, since β(m,n) = Γ(m)Γ(n)
Γ(m+n) ,

β(
p+ 1

2
,
q + 1

2
) =

Γ(p+1
2 )Γ( q+1

2 )

Γ(p+1
2 + q+1

2 )
=

Γ(p+1
2 )Γ( q+1

2 )

Γ(p+q+2
2 )

.

Thus,∫ π/2

0
sinp θ cosq θ dθ =

1

2
·
Γ(p+1

2 )Γ( q+1
2 )

Γ(p+q+2
2 )

.

3. Evaluate

∫ π/2

0
sin4 θ cos6 θ dθ.

∫ π/2

0
sin4 θ cos6 θ dθ =

Γ(4+1
2 ) Γ(6+1

2 )

2Γ(4+6+2
2 )

=
Γ(52) Γ(

7
2)

2Γ(6)

=
3
2
1
2Γ(

1
2)

5
2
3
2
1
2Γ(

1
2)

2× 5!

=
45
32

[
Γ(12)

]2
2× 120

=
45

64× 120
π =

3

64× 8
π =

3π

512
.

2.4.6 Problems

1. Prove that (i) β(m, 1) = 1
m , (ii) Γ(5/2) = 3

4

√
π, (iii) Γ(6) = 120.

2. Evaluate the following integrals using beta and gamma functions:

(i)

∫ 1

0
x3(1− x2)5/2 dx (ii)

∫ 1

0
x4(1− x2)3 dx (iii)

∫ 1

0
x3/2(1− x)3/2 dx

(iv)

∫ 1

0
x5/2(1− x) dx (v)

∫ π/2

0
cos4 x dx (vi)

∫ π/2

0
sin6 x cos3 x dx

Ans: (i) 2
63 (ii) 16

1155 (iii) 3π
128 (iv) 4

63 (v) 3π
16 (vi) 2

63 .

—∗—


