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1 Equivalence Relation and Partitions

1.1 Definitions and elementary properties

Definition. 1.1 The Cartesian product of two non-empty sets A,B is the set of all

ordered pairs (a, b), where a ∈ A, b ∈ B and is denoted by A×B. Thus

A×B = {(a, b) : a ∈ A, b ∈ B}.

For a finite number of non-empty sets A1, A2, . . . , An their Cartesian product is

A1 × A2 × · · · × An = {(a1, a2, . . . , an) : ai ∈ Ai, i ≤ i ≤ n}.

An element of the form (a1, a2, . . . , an) is called an ordered n-tuple. The i-th entry ai

of this ordered n-tuple is called the i-th component of the n-tuple. Thus the Cartesian

product of n non-empty sets is the set of all the n-tuples, whose i-th component belongs

to the i-th set where 1 ≤ i ≤ n.

If A = A1 = A2 = · · · = An then A1 × A2 × · · · × An is denoted by An. Hence An =

{(a1, a2, . . . , an) : ai ∈ A, 1 ≤ i ≤ n}.

Definition. 1.2 For two non-empty sets A,B a set S ⊂ A×B is called a relation from

A to B. The set A is called the domain and B is called the codomain of the relation S. If
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for (x, y) ∈ A× B, (x, y) ∈ S it is usually written as xSy. If (x, y) ̸∈ S it is also written

as x ̸Sy.

when A = B a set S ⊂ A× A = A2 is called a binary relation on A or simply a relation

on A. For any positive integer n a subset S ⊂ An is called an n-ary relation on A.

Example. 1.3 Consider the set R and the set

S = {(x, y) : x ≤ y} ⊂ R2. The set S is called

the less than or equal to relation on R.
In Cartesian plane the set S is the upper portion

of the diagonal line y = x, including that line. As

usual if (x, y) ∈ S we write it as xSy or x ≤ y.

The upper portion of the diagonal line y = y,

excluding that line, is the ‘ <’ relation. The lower

portion of the diagonal is ‘≥’ relation when the

diagonal line is included and is the > relation

when the diagonal line is excluded.

O x

y

(x, y);x ≤ y

x

y

‘≤’ relation

y
=
x

Example. 1.4 1. Let X be any non-empty set. Then the set ∆X = {(x, x) : x ∈ X}
is a relation on X, called the diagonal relation on X. hence (x, y) ∈ ∆x if and only

id x = y.

2. For any non-empty set X, X ×X is itself a relation on X.

3. Let S = {(x, y) ∈ R2 : |x| > |y|}. Then S is a relation on R.

4. Let A = {a, b, c, d, }. Then S = {((a, b), (a, c), (a, d), (b, c), (b, d), (c, d)} is a relation

on A.

Definition. 1.5 A relation R on a set X is called a reflexive relation if xRx for all

x ∈ X, or in other words if ∆X ⊂ R.

Example. 1.6 1. In any non-empty set X the relation ∆X is a reflexive relation.

2. The relations ‘≤’ and ‘≥’ are reflexive relations on R, whereas ‘<’ and ‘>’ are not

reflexive relations.

3. Let A = {a, b, c, d, e}. Then the relation

R = {(a, a), (a, b), (b, b), (b, c), (b, d), (c, c), (c, d), (d, c), (d, d), (e, a), (e, b), (e, e)}
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is reflexive, since ∆A = {(a, a), (b, b), (c, c), (d, d), (e, e)} ⊂ R. But the relation

S = {(a, a), (a, b), (b, b), (b, c), (b, d), (c, c), (c, e), (d, c), (d, e), (e, a), (e, b), (e, e)}.

is not reflexive, since (d, d) ̸∈ S.

4. let p be a positive integer. On the set Z of all integers the relation ρp, defined by

ρp = {(m,n) : m−n is divisible by p}, is a reflexive relation, since for every m ∈ Z,
m−m = 0 is divisible by p and hence mρpm for every m ∈ Z.

Definition. 1.7 A relation R on a set X is called a transitive relation if for a, b, c ∈ X,

aRb and bRc implies that aRc.

Example. 1.8 1. On R all of the relations <,≤, >,≥ are transitive relations.

2. for p ∈ N, the relation ρp on Z, as defined earlier, is a transitive relation. Let

i, j, k ∈ N such that iρpj and jρpk. Then j − i is divisible by p and k − j is also

divisible by p. Hence k − i = (k − j) + (j − i) is divisible by p, i.e., iρpk. So ρp is

transitive.

3. On the set R define a relation S by S =

{(x, y) : xy < 0}. Then S is not transi-

tive. For x, y, z ∈ R, assume that xSy and

ySz. Then xSy gives that x and y are of

opposite signs and ySz gives that y and z

have opposite signs. Hence x and z must

have the same signs, i.e., xz > 0. This

shows that (x, z) ̸∈ S, i.e., x ̸ Sz. Hence

the relation S is not transitive.

(x, y) : xy < 0

x

y

O x

y

S

S

4. On the set A = {a, b, c, d, e} the relation

R = {(a, a), (a, b), (b, b), (b, c), (b, d), (c, c), (c, d), (d, c), (d, d), (e, a), (e, b), (e, e)}

is not transitive, since (a, b) ∈ R, (b, c) ∈ R, but (a, c) ̸∈ R.

Definition. 1.9 A relation R on a setX is called symmetric if for all x, y ∈ X, (x, y) ∈ R

implies that (y, x) ∈ R, i.e., if for all x, y ∈ X, xRy ⇒ yRx.

A relation R on a set X is called anti-symmetric if for all x, y ∈ X, (x, y) ∈ R and

(y, x) ∈ R, implies that x = y i.e., if for all x, y ∈ X, xRy and yRx ⇒ x = y.
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Example. 1.10 1. The relations≤ and≥ are both anti-symmetric but not symmetric.

2. The relation ρp on Z, where p ∈ N, is symmetric but not anti-symmetric.

3. On any non-empty set X the relation ∆X is both symmetric and anti-symmetric.

4. On the set A = {a, b, c, d, e} where the elements are distinct, the relation

R = {(a, a), (a, b), (b, b), (b, c), (b, d), (c, c), (c, d), (d, c), (d, d), (e, a), (e, b), (e, e)}

is neither symmetric, nor anti-symmetric. Here (a, b) ∈ R but (b, a) ̸∈ R – hence R is

not symmetric. Also (c, d) ∈ R, (d, c) ∈ R, but c ̸= d – thus R is not anti-symmetric.

Definition. 1.11 Let R be a relation on a set X. Then the inverse of R, denoted by

R−1, is the relation R−1 = {(y, x) ∈ X ×X : (x, y) ∈ R}.

R

R−1

X ×X

(x, y)

(y, x)
If one draws the figure, it can be observed that

the inverse of a relation R is nothing but the

mirror image of R about the diagonal.

From the definition it immediately follows that:

1. A relation R is symmetric if and only if R = R−1.

2. A relation R is anti-symmetric if and only if R ∩R−1 = ∆X .

Definition. 1.12 A relation R on a set S is called a preorder relation if it is (i) reflexive

and (ii) transitive. R is called a partial order relation if it is (i) reflexive, (ii) transitive

and (iii) anti-symmetric.

Usually a partial order is written as ‘≤’. If P is a set and ≤ is a partial order on the set

P then the pair (P,≤) is called a partially ordered set or a POset.

Example. 1.13 1. The usual ‘<’ or ‘>’ are preorder relations on R. The relations

‘≤’ and ‘ ≥’ are partial orders on R.

2. On N define a relation ≼ is defined by m ≼ n if and only if m divides n, i.e., there

exists an integer q such that n = mq. Then ≼ is a partial order on N.

3. If X is a non-empty set then the relation ⊆ on the power set P (X) is a partial order.
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Definition. 1.14 A relation R on a set X is called an equivalence relation on X if it is

(i) reflexive, (ii) symmetric and (iii) transitive.

Example. 1.15 1. For any non-empty set X the diagonal relation ∆X is the simplest

example of equivalence relation.

2. For any set X, X ×X is an equivalence relation.

3. For a positive integer p, the relation ρp on Z is an example of equivalence relation.

4. On C, the set of all the complex numbers, define a relation ‘∼’ as follows: for all

z1, z2 ∈ C, z1 ∼ z2 if and only if |z1| = |z2|. Then ‘∼’ is an equivalence relation.

Theorem. 1.16 Intersection of two equivalence relations is an equivalence relation.

Proof. Let R and S be two equivalence relations on a set X.

Since R and S are reflexive, ∆X ⊂ R and ∆X ⊂ S and hence ∆X ⊂ R ∩ S. Thus R ∩ S

is reflexive.

Also by symmetry of R and S, for x, y ∈ X, (x, y) ∈ R ∩ S ⇒ (x, y) ∈ R and (x, y) ∈
S ⇒ (y, x) ∈ R and (y, x) ∈ S ⇒ (y, x) ∈ R ∩ S. Hence R ∩ S is symmetric.

Finally, assume that (x, y) ∈ R∩S and (y, z) ∈ R∩S where x, y, z ∈ X. Then (x, y) ∈ R

and (y, z) ∈ R, also (x, y) ∈ S and (y, z) ∈ S. By transitivity of R and S we have

(x, z) ∈ R and (x, z) ∈ S. Thus (x, z) ∈ R ∩ S, i.e., R ∩ S is transitive.

Hence R ∩ S is an equivalence relation on X. ■

Union of two equivalence relations need not be an equivalence relation. We can see it by

citing the following example.

Example. 1.17 Consider the equivalence relations ρ5 and ρ7 on Z. Here (1, 6) ∈ ρ5 since

|6 − 1| = 5 is divisible by 5. Also (6, 13) ∈ ρ7 since |13 − 6| = 7 is divisible by 7. Since

ρ5 ⊂ ρ5 ∪ ρ7 and ρ7 ⊂ ρ5 ∪ ρ7 it follows that (1, 6) and (6, 13) both belong to ρ5 ∪ ρ7. But

(1, 13) does not belong to either of ρ5 and ρ7 and hence (1, 13) ̸∈ ρ5 ∪ ρ7. Thus ρ5 ∪ ρ7 is

not transitive and hence it is not an equivalence relation.

1.2 Partition of a Set

Definition. 1.18 Let I be a non-empty set, if for each i ∈ I there is a set Ai then the

collection {Ai : i ∈ I} is called an indexed family of sets, the set I is called the index set.
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Example. 1.19 1. Let I = {1, 2, 3, 4}. Then the set of sets {A1, A2, A3, A4} is an

indexed family of sets can be written as {Ai : i ∈ {1, 2, 3, 4}}.

2. If for each n ∈ N there is a set An, then {An : n ∈ N} is an indexed family of sets,

N being the index set.

3. Let I = {x : 1 ≤ x ≤ 1}, the closed interval [0, 1]. If for each x ∈ I, Jx = [x−1, x+1],

the closed interval with end points x− 1 and x+ 1, then {Jx : x ∈ I} is an indexed

family of sets.

Definition. 1.20 Let {Ai : i ∈ I} be an indexed family of sets. The union of this family

is the set ⋃
i∈I

Ai = ∪{Ai : i ∈ I} = {x : x ∈ Ai for some i ∈ I}.

The intersection of this family is⋂
i∈I

Ai = ∩{Ai : i ∈ I} = {x : x ∈ Ai for all i ∈ I}.

Example. 1.21 1. If I = {1, 2, 3, 4, 5} and Ai = (i, i + 1) for all i ∈ I, find ∪5
i=1Ai

and ∩5
i=1Ai.

∪5
i=1Ai = ∪{Ai : i ∈ I} = {x : x ∈ Ai for some i ∈ I}

= {x : i < x < i+ 1 for some i ∈ I}

= {x : i < x < i+ 1, for some i, 1 ≤ i ≤ 5}

= {x : 1 < x < 6, i ̸= 1, 2, 3, 4, 5}

= (1, 6)− {1, 2, 3, 4, 5}.

∩5
i=1Ai = ∅ since the sets are pairwise disjoint.

2. If for each n ∈ N if An = ( 1
n
, 4 + 1

n
) find ∪{An : n ∈ N} and ∩{An : n ∈ N}.

Let A = ∪{An : n ∈ N}. Take x ∈ R. If x ≤ 0 then x ̸∈ An for any n ∈ N,
hence x ̸∈ A. If 0 < x < 1, then we can find n ∈ N such that 1

n
< x and hence

x ∈ An ⊂ A. If 1 ≤ x ≤ 4, then x ∈ An for all n ∈ N. For 4 < x < 5, x ∈ A1 ⊂ A.

For x ≥ 5, x ̸∈ An for all n ∈ N and hence x ̸∈ A. Thus x ∈ A if and only if

0 < x < 5, hence A = ∪{An : n ∈ N} = (0, 5) .

0 1 2 3 4 5

( )
A1A1

( )
A2 A2

( )
A10 A10
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Let B = ∩{An : n ∈ N}. To find the intersection, note that An ⊂ (1, 4] for all n ∈ N
hence (1, 4] ⊂ B. If x ≤ 1 then x ̸∈ A1 and hence x ̸∈ B. If x > 4 we can find n ∈ N
such that 4 + 1

n
< x and hence x ̸∈ An so that x ̸∈ B. Thus x ∈ B if and only if

1 < x ≤ 4. Hence ∩{An : n ∈ N} = (1, 4].

Definition. 1.22 Let X be a set. A collection P = {Ai : i ∈ I} is called a partition of

the set X if (i) X = ∪{Ai : i ∈ I} and for i, j ∈ I, i ̸= j ⇒ Ai ∩ Aj = ∅.

A1
A2

A3
A4

A5
A6

X

The set X is partitioned into disjoint

subsets A1, A2, . . . , A6 of X.

Ai∩Aj = ∅ for i ̸= j; i, j ∈ {1, 2, . . . , 6}
and A1 ∪ A2 ∪ · · · ∪ A6 = X.

Example. 1.23 1. For each n ∈ Z define In = (n, n + 1]. Then we have Im ∩ In = ∅

for m ̸= n, m,n ∈ Z. Also
∞⋃

n=−∞

In = ∪{In : n ∈ Z} = R. Thus {In : n ∈ Z} is a

partition of R.

2. For i = 0, 1, 2, . . . , 5, define Ai = {6k + i : k ≥ 0}.

A0 = {6, 12, 18, 24, . . .}, A1 = {1, 7, 13, 19, . . .}, A2 = {2, 8, 14, 20, . . .}

A3 = {3, 9, 15, 21, . . .}, A4 = {4, 10, 16, 22, . . .}, A5 = {5, 11, 17, 23, . . .}.

Here Ai ∩ Aj = ∅ when i ̸= j and A0 ∪ A1 ∪ · · · ∪ A6 = N. Hence {A0, A1, . . . , A5}
is a partition of N.

Theorem. 1.24 Let X be a set ρ be an equivalence relation on X. Then ρ induces a

partition Pρ on the set X. On the other hand if P is a partition on the set X then there

exists an equivalence relation ρP of X such that P = Pρ
P
.

Proof. Assume that ρ is an equivalence relation on X. For each a ∈ X define a subset

ρ(a) of X by ρ(a) = {b ∈ X : aρb}. Then since aρa, a ∈ ρ(a) and hence ρ(a) ̸= ∅ for all

a ∈ X. It also follows that X = ∪{ρ(a) : a ∈ X}.

We now show that for a, b ∈ X either ρ(a) = ρ(b) or ρ(a) ∩ ρ(b) = ∅. If ρ(a) ∩ ρ(b) ̸= ∅
choose x ∈ ρ(a) ∩ ρ(b). Then x ∈ ρ(a) ⇒ aρx ⇒ xρa (by symmetry) and x ∈ ρ(b) ⇒
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bρx ⇒ xρb (by symmetry). Now, for any y ∈ X,

y ∈ ρ(a) ⇒ aρy ⇒ yρa (symmetry)

yρa and aρx ⇒ yρx (transitivity)

yρx and xρb ⇒ yρb (transitivity) ⇒ bρy (symmetry) ⇒ y ∈ ρ(b).

Hence y ∈ ρ(a) ⇒ y ∈ ρ(b), thus ρ(a) ⊂ ρ(b). Similarly, we can show for any z ∈ X,

z ∈ ρ(b) ⇒ z ∈ ρ(a), i.e., ρ(b) ⊂ ρ(a). Hence ρ(a) = ρ(b).

Hence X is expressed as X = ∪{ρ(a) : a ∈ X}, where the sets ρ(a)’s are disjoint or equal
for different a’s. Thus Pρ = {ρ(a) : a ∈ X} is a partition of X.

Conversely, assume that P = {Ai : i ∈ I} is a partition of X. Define a relation ρ on X

by, for all a, b ∈ X, aρb if and only if {a, b} ⊂ Ai for some i ∈ I, i.e. aρb if and only if a

and b belong to the same member Ai of the partition P.

Reflexivity and symmetry of ρ follows immediately. To show transitivity, Let a, b, c ∈ X

such that aρb and bρc. Then there are Ai, Aj ∈ P such that {a, b} ⊂ Ai and {b, c} ⊂ Aj.

This shows that b ∈ Ai ∩ Aj, i.e., Ai ∩ Aj ̸= ∅. But P being a partition of X, either

Ai ∩Aj = ∅ or Ai = Aj. Hence we must have Ai = Aj, i.e., a, b, c ∈ Ai. Hence aρc thus ρ

is transitive.

Let a ∈ Ai. Then b ∈ ρ(a) ⇐⇒ aρb ⇐⇒ a and b belong to the same member of P

⇐⇒ b ∈ Ai. Thus ρ(a) = Ai. Hence Pρ = P. ■

Definition. 1.25 For an equivalence relation ρ on a set X and for a ∈ X the set

ρ(a) = {b ∈ X : aρb} is called the equivalence class of ρ containing a. The equivalence

class ρ(a) is also denoted by ā or by [a] or by (a).

From the above theorem we see that the equivalence classes of an equivalence relation ρ

on a set X has the following properties:

1. Equivalence class of an element contains that element, i.e., a ∈ [a] for all a ∈ X.

2. For a, b ∈ X either [a] = [b] or [a] ∩ [b] = ∅.

3. X = ∪{[a] : a ∈ X}.

Definition. 1.26 For an equivalence relation ρ on a set X the set of all equivalence

classes is called the quotient set of ρ and is denoted by X/ρ. Thus X/ρ = {ρ(a) : a ∈ X}.
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Example. 1.27 Define a relation ρ5 on N by mρ5n if and only if |m− n| is divisible by

5. Show that ρ5 is an equivalence relation on N and find its quotient set.

That ρ5 is an equivalence relation has already been shown in a previous example. Note

that ρ5(1) = {m ∈ N : 1ρ5m} = {m ∈ N : |m − 1| is divisible by 5} = {1, 6, 11, 16, . . .}.
Similarly we can show that ρ5(2) = {2, 7, 12, 17, . . .}, ρ5(3) = {3, 8, 13, 18, . . .}, ρ5(4) =

{4, 9, 14, 19, . . .} and ρ5(5) = {5, 10, 15, 20, . . .}. We can see ρ5(6) is same as ρ5(1), ρ5(7)

is same as ρ5(2) and so on. Hence N/ρ5 = {ρ5(1), ρ5(2), ρ5(3), ρ5(4), ρ5(5)}.

1.3 Exercise

1. Let X = {a, b, c, d, e}, construct relation ρ on X such that ρ is (i) reflexive but

not symmetric and transitive, (ii) reflexive and symmetric but not transitive, (iii)

not reflexive but symmetric and transitive, (iv) reflexive and transitive but not

symmetric.

2. If X = {1, 2, 3} find all the equivalence relations on X, or equivalently all the

partitions of X.

3. Let X = {a, b, c, d} and P = {{a}, {b, c}, {d}}. Find the equivalence relation in-

duced by P.

4. Verify which of the following relations on Z are equivalence relations:

(a) ρ = {(a, b) : a2 = b2}.

(b) ρ = {(a, b) : |a| ≤ |b|}.

(c) ρ = {(a, b) : |a| = |b|}.

(d) ρ = {(a, b) : a− bis divisible by9}.

(e) ρ = {(a, b) : a2− b2is divisible by5}.

(f) ρ = {(a, b) : a = b3}.

5. Let ρ = ∆X ∪ {(p, q), (q, p), (p, t), (r, s), (r, t), (s, r), (s, t), (t, p), (t, r), (t, s)} be a re-

lation on the set X = {p, q, r, s, t}. Show that ρ is an equivalence relation on X and

find the partition induced by ρ and the quotient set.

6. Let M2 denote the set of all 2× 2 matrices over the real numbers. Define a relation

σ on M2 by AσB if and only if there is a matrix P in M2 such that A = PBP−1.

Verify whether σ is an equivalence relation on M2.
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2 Functions

2.1 Definition and Examples

Functions are special type of relations.

Definition. 2.1 Let X, Y be two nonempty sets, a subset f ⊂ A×B is called a function

from X to Y , written as f : X → Y , if it satisfies the following conditions:

1. For every x ∈ X there exists y ∈ Y such that (x, y) ∈ f ,

2. for x ∈ X if (x, y1) ∈ f and (x, y2) ∈ f , where y1, y2 ∈ Y , then y1 = y2.

If (x, y) ∈ f the it is written as y = f(x).

The set X is called the domain of f and Y is called the codomain of f .

The range of f is the subset f(X) of Y defined by

f(X) = {f(x) : x ∈ X} = {y ∈ Y : ∃x ∈ X such that y = f(x)}.

If y = f(x) we say y is the image of x and x is called a pre-image of y.

It can be observed from the above definition that (i) condition 1 says that every element

x in the domain has an image in the range and the condition 2 says that an element in the

domain can not have more than one images. However different elements of the domain of

a function can have same image.

Example. 2.2 1. For A = {a, b, c}, B = {x, y, z}, f = {(a, x), (b, y), (c, y)} ⊂ A × B

is a function. We write it as f(a) = x, f(b) = f(c) = y. Here we see that b and c

have the same image y, i.e., y has two pre-images b and c, the domain of f is A and

the codomain of f is B. The set {x, y} ⊂ B is the range of f .

2. Denote R≥0 = {x ∈ R : x ≥ 0}. The relation f : R≥0 → R defined by f(x) =
√
x

is not a function, since any x > 0 has two images, +
√
x and −

√
x. However

f(x) = +
√
x and f(x) = −

√
x are functions. Hence whenever we write the function

f(x) =
√
x we mean the positive square root.

3. For any nonempty set X the function iX : X → X, defined by iX(x) = x for all

x ∈ X, is called the identity function on X.
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Definition. 2.3 Let f : X → Y and g : Y → Z be two functions. The composition of f

and g is a function g ◦ f : X → Z defined by (g ◦ f)(x) = g(f(x)) for all x ∈ X.

X Y Z
f g

g ◦ f

Example. 2.4 1. f : R → R and g : R → R defined by f(x) = x2 and g(x) = ex,

x ∈ R. Then (g ◦ f)(x) = g(f(x)) = g(x2) = ex
2
and (f ◦ g)(x) = f(g(x)) = f(ex) =

(ex)2 = e2x.

2. f, g : R → R defined by f(x) = ax2 + bx + c and g(x) = sinx + cosx. Then

(g ◦ f)(x) = g(f(x)) = g(ax2 + bx+ c) = sin(ax2 + bx+ c) + cos(ax2 + bx+ c) and

(f ◦ g)(x) = f(g(x)) = f(sinx+ cosx) = a(sinx+ cosx)2 + b(sinx+ cosx) + c.

Theorem. 2.5 For function f : X → Y, g : Y → Z, h : Z → W , h ◦ (g ◦ f) = (h ◦ g) ◦ f ,
i.e., the composition of functions obeys the associative laws.

Proof. For x ∈ X, (h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h(g(f(x))) = (h ◦ g)(f(x)) =

((h ◦ g) ◦ f))(x). Hence h ◦ (g ◦ f) = (h ◦ g) ◦ f . ■

Definition. 2.6 Let f : X → Y be a function, A ⊂ X,B ⊂ Y . Then we define

f(A) = {f(x) : x ∈ A} = {y ∈ Y : ∃x ∈ A such that y = f(x)}

f−1(B) = {x ∈ X : f(x) ∈ B} = {x ∈ X : ∃y ∈ B such that y = f(x)}

f(A) is called the image of A under f and f−1(B) is called the pre-image of B under f .

Thus the range of f is the set f(X) ⊂ Y .

Theorem. 2.7 let f : X → Y be a function, A1, A2 ⊂ X, B1, B2 ⊂ Y . Then

1. If A1 ⊂ A2 then f(A1) ⊂ f(A2).

2. f(A1 ∪ A2) = f(A1) ∪ f(A2),

3. f(A1 ∩ A2) ⊂ f(A1) ∩ f(A2),

4. If B1 ⊂ B2 then f−1(B1) ⊂ f−1(B2).

5. f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2),

6. f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2).
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Proof. 1. Assume A1 ⊂ A2. Then y ∈ f(A1) ⇒ ∃x ∈ A1 such that y = f(x). Now

x ∈ A1 ⇒ x ∈ A2 ⇒ f(x) ∈ f(A2) ⇒ y ∈ f(A2). Hence y ∈ f(Aa) ⇒ y ∈ f(A2).

Thus A1 ⊂ A2 ⇒ f(A1) ⊂ f(A2).

2. y ∈ f(A1 ∪ A2) ⇒ y = f(x) for some x ∈ A1 ∪ A2. Also

x ∈ A1 ∪ A2 ⇒ x ∈ A1 or x ∈ A2 ⇒ f(x) ∈ f(A1) or f(x) ∈ f(A2)

⇒ y ∈ f(A1) or y ∈ f(A2 ⇒ y ∈ f(A1) ∪ f(A2).

Thus y ∈ f(A1 ∪ A2) ⇒ y ∈ f(A1) ∪ f(A2), i.e., f(A1 ∪ A2) ⊂ f(A1) ∪ f(A2).

Conversely, since A1 ⊂ A1 ∪A2, by 1 above f(A1) ⊂ f(A1 ∪A2). Similarly f(A2) ⊂
f(A1 ∪ A2). Hence f(A1) ∪ f(A2) ⊂ f(A1 ∪ A2).

Combining, f(A1 ∪ A2) = f(A1) ∪ f(A2).

3. Choose y ∈ f(A1) ∩ f(A2). Then there exists x ∈ A1 ∩ A2 such that y = f(x). Now,

x ∈ A1 ∩ A2 ⇒ x ∈ A1 and x ∈ A2 ⇒ f(x) ∈ f(A1) and f(x) ∈ f(A2) ⇒ f(x) ∈
f(A1) ∩ f(A2) ⇒ y ∈ f(A1) ∩ f(A2). Hence f(A1 ∩ A2) ⊂ f(A1) ∩ f(A2).

4. x ∈ f−1(B1) ⇒ f(x) ∈ B1 ⇒ f(x) ∈ B2 ⇒ x ∈ f−1(B2). Hence the result follows.

5. x ∈ f−1(B1 ∪ B2) ⇐⇒ f(x) ∈ B1 ∪ B2 ⇐⇒ f(x) ∈ B1 or f(x) ∈ B2 ⇐⇒ x ∈
f−1(B1) or x ∈ f−1(B2) ⇐⇒ x ∈ f−1(B1) ∪ f−1(B2). Hence f−1(B1 ∪ B2) =

f−1(B1) ∪ f−1(B2).

6. x ∈ f−1(B1 ∩ B2) ⇐⇒ f(x) ∈ B1 ∩ B2 ⇐⇒ f(x) ∈ B1 and f(x) ∈ B2 ⇐⇒ x ∈
f−1(B1) and x ∈ f−1(B2) ⇐⇒ x ∈ f−1(B1) ∩ f−1(B2). Hence f−1(B1 ∩ B2) =

f−1(B1) ∩ f−1(B2). ■

The inclusion in (3) of the above theorem may be proper. For example take f : R → R
defined by f(x) = 1− x2, x ∈ R. Let A = [−1, 0] and B = [0, 1]. Then

f(A) = {1− x2 : −1 ≤ x ≤ 0} = [0, 1] and f(B) = {1− x2 : 0 ≤ x ≤ 1} = [0, 1].

Hence f(A) ∩ f(B) = [0, 1]. But A ∩ B = {0} and f(A ∩ B) = {f(0)} = {1}. Hence

f(A ∩B) ⫋ f(A) ∩ f(B)

Definition. 2.8 1. A function f : X → Y is called injective or one-one if for all

x, y ∈ X, x ̸= y ⇒ f(x) ̸= f(y), or equivalently, f(x) = f(y) ⇒ x = y.

2. f : X → Y is called surjective or onto if the range of f is Y , i.e., for all y ∈ Y there

is x ∈ X such that y = f(x).
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3. f is called bijective if it is both injective and surjective.

Example. 2.9 1. f : R → R defined by f(x) = x2 is neither injective nor surjective.

For a > 0 f(a) = f(−a) = a2 but a ̸= −a, hence f is not injective. Also for b < 0

there exists no a ∈ R for which f(a) = b, hence f is not surjective.

However if the codomain has been changed to R≥0 then f becomes surjective.

2. The function f : R → R defined by f(x) = ax + b, a ̸= 0 is bijective. If x1, x2 ∈ R
such that x1 ̸= x2. Then ax1 ̸= ax2 and hence ax1+ b ̸= ax2+ b, i.e., f(x1) ̸= f(x2).

Hence f is surjective.

Also for y ∈ R, take x = y−b
a

so that f(x) = a · y−b
a

+ b = y. Hence f is surjective.

3. The function f : [0, 2π] → [−1, 1] defined by f(x) = sin x is surjective but not

injective. For y ∈ [−1, 1], x = sin−1 y ∈ [0, 2π] so that f(x) = y. Hence f is

surjective. Also f(0) = f(π) shows that f is not injective.

Theorem. 2.10 For the functions f : X → Y and g : Y → Z,

1. If f and g are injective then g ◦ f is injective.

2. If f and g are surjective then g ◦ f is surjective.

Proof. 1. Since f, g is injective, for x1, x2 ∈ X, x1 ̸= x2 ⇒ f(x1) ̸= f(x2) ⇒ g(f(x1)) ̸=
g(f(x2)). Hence x1 ̸= x2 ⇒ (g ◦ f)(x1) ̸= (g ◦ f)(x2). Thus g ◦ f is injective,

2. For z ∈ Z, since g is surjective, there exists y ∈ Y such that g(y) = z. Also since f is

surjective there exists x ∈ X such that f(x) = y. Hence (g ◦ f)(x) = g(f(x)) = g(y) = z.

Thus g ◦ f is surjective. ■

Theorem. 2.11 For the functions f : X → Y and g : Y → Z,

1. If g ◦ f is injective then f is injective.

2. If g ◦ f is surjective then g is surjective.

Proof. 1. Take x1, x2 ∈ X such that f(x1) = f(x2). Now (g ◦ f)(x1) = g(f(x1)) =

g(f(x2)) = (g ◦ f)(x2) and hence x1 = x2 since g ◦ f is injective. Thus f(x1) = f(x2)

implies that x1 = x2 which shows that f is injective.
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2. Choose z ∈ Z. Since g ◦ f is surjective there exists x ∈ X such that (g ◦ f)(x) = z,

i.e., g(f(x)) = z. Let f(x) = y. Then g(y) = z, thus y is a pre-image of z under g and

hence g is surjective. ■

The following result follows immediately.

Corollary. 2.12 If f : X → Y and g : Y → Z are functions such that g ◦ f is bijective

then f is injective and g is surjective.

Definition. 2.13 Let fX → Y be a function. A function g : Y → X is called a left

inverse of f if g ◦f = iX . A function h : Y → X is called a right inverse of f if f ◦h = iY .

A function which is both left inverse and right inverse is called the inverse of f and is

denoted by f−1. Thus f ◦ f−1 = iY and f−1 ◦ f = iX .

Example. 2.14 1. Let A = {a, b, c, d} and B = {u, v, w, x, y}. Define f : A → B

by f(a) = u, f(b) = v, f(c) = w, f(d) = x. The function g : B → A is defined by

g(u) = a, g(v) = b, g(w) = c, g(x) = d, g(y) = a.

Then (g ◦ f)(a) = g(f(a)) = g(u) = a, similarly, (g ◦ f)(b) = b, (g ◦ f)(c) = c and

(g ◦ f)(d) = d. Thus g ◦ f = iA and hence g is left inverse of f .

On the other hand, (f ◦ g)(u) = f(g(u)) = f(a) = u. Similarly, (f ◦ g)(v) =

v, (f ◦ g)(w) = w, (f ◦ g)(x) = x and (f ◦ g)(y) = f(g(y)) = f(a) = u. Hence

(f ◦ g) ̸= iB, thus g is not right inverse of f .

2. let A = {a, b, c, d} and B = {x, y, z}. Define f : X → Y by f(a) = f(b) =

x, f(c) = y, f(d) = z and h : B → A by h(x) = a, h(y) = c, h(z) = d. Then

(f ◦ h)(x) = f(h(x)) = f(a) = x. Similarly, (f ◦ h)(y) = y, (f ◦ h)(z) = z, hence

f ◦ h = iB.

But (h ◦ f)(b) = h(f(b)) = h(x) = a shows that h ◦ f ̸= iA. Thus h is right inverse

of f by not a left inverse of f .

Theorem. 2.15 Let f : X → Y be a function. then

1. f has a left inverse if and only if f is injective.

2. f has a right inverse if and only if f is surjective.

Proof. 1. Assume that f has a left inverse g : Y → X. Then g ◦f = iX . Let x1, x2 ∈ X,

such that f(x1) = f(x2). Then g(f(x1)) = g(f(x2)), i.e., (g ◦ f)(x1) = (g ◦ f)(x2) ⇒
iX(x1) = iX(x2) ⇒ x1 = x2. Hence f is injective.
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Conversely, assume that f is injective. Define g : Y → X as follows: for y ∈ Y if y

belongs to the range of f then there exists x ∈ X such that y = f(x), define g(y) = x.

If y is not in the range of f then define g(y) arbitrarily in X. Then for all x ∈ X,

(g ◦ f)(x) = g(f(x)) = g(y) = x. Hence g ◦ f = iX and hence g is a left inverse of f .

2. Assume that f has a right inverse h : Y → X. Then f ◦ h = iY . let y ∈ Y . Then

y = iY (y) = (f ◦ h)(y) = f(h(y)). Thus h(y) is a pre-image of y. Hence f is surjective.

Conversely, assume that f is surjective. For any y ∈ Y there exists at least one x ∈ X such

that y = f(x), i.e., the set f−1({y}) is non-empty. For each y ∈ Y choose x ∈ f−1({y})
arbitrarily and define h(y) = x. (Such a choice is possible by Axiom of Choice). Then

(f ◦ h)(y) = f(h(y)) = f(x) = y, since x ∈ f−1({x}). Thus f ◦ h = iY , i.e., h is right

inverse of f . ■

Definition. 2.16 A function f : X → Y is called left invertible if it has a left inverse

g : Y → X such that g◦f = iX . f is called right invertible if it has right inverse h : Y → X

such that f ◦ h = iY . The function f is called invertible if it it has an inverse f−1, which

is both left and right inverse.

Theorem. 2.17 A function f is invertible if and only if f is a bijection.

Proof. It follows from the theorem 2.15.

Students are requested to write the complete proof of this theorem using 2.15.

Remark. 2.18 It can be noted that if f : A → B is a bijection then f−1 : B → A is also

a bijection, so without any loss of generality, instead of saying there is a bijection from A

to B, we can say there is a bijection between A and B.

Definition. 2.19 Two sets A and B are said to be equipotent if there exists a bijection

between A and B and is denoted by A ∼ B. Two equipotent sets are said to be of the

same cardinality.

Theorem. 2.20 If X is an universal set and P (X) denoted the set of all subsets of X,

i.e., the power set of X, then ∼ is an equivalence relation on P (X).

Proof. For any set A, iA : A → A is a bijection and hence A ∼ A. So ∼ is reflexive.

Also, for A,B ⊂ X, A ∼ B ⇒ ∃ a bijection f : A → B ⇒ f−1 : B → A is a bijection ⇒
B ∼ A. Hence ∼ is symmetric. Finally, if A ∼ B and B ∼ C, A,B,C ⊂ X, then there

are bijections f : A → B and g : B → C. So g ◦ f : A → C is a bijection and hence

A ∼ C. Thus ∼ is transitive. So ∼ is an equivalence relation on P (X). ■
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Hence all the sets belonging to an equivalence class of ∼ have the same cardinality.

Definition. 2.21 For an integer n ∈ N the cardinal number of the set In = {1, 2, . . . , n}
is defined to be n. Hence any set equipotent with In has the cardinal number n. Cardinal

number of the empty set is defined as zero. For any set A the cardinal number of the set

A is denoted by |A| or by n(A) or by card(A).

Hence the cardinal number of a finite set is the number of elements in that set.

Theorem. 2.22 A set can not be equipotent with its power set.

Proof. If possible, let A ∼ P (A), where P (A) is the power set of A. Then there exists

a bijection h : A → P (A). Note that for all x ∈ A, h(x) is a subset of A.

Define a set D ⊂ A by D = {x ∈ A;x ̸∈ h(x)}. Since h is surjective there exists x0 ∈ A

such that h(x0) = D. Now, if x0 ∈ D then by the property of D, x0 ̸∈ h(x0) = D. Again,

if x0 ̸∈ D = h(x0) then x0 ∈ D. Hence a paradox arises.

So there is no x0 ∈ A such that h(x0) = D and hence h is not surjective. Thus there is

no surjective map from A to P (A), and hence A can not be equipotent with P (A).

Definition. 2.23 A set is called countable if it is equipotent with N. The cardinal

number of a countable set is written as ℵ0 (pronounced as “Alef zero”, alef is the first

letter of Hebrew alphabets).

Example. 2.24 The set Z is countable.

Define f : N → Z by f(n) = n−1
2

if n is odd and f(n) = −n
2
if n is even. Hence

f(1) = 0, f(2) = −1, f(3) = 1, f(4) = −2, f(5) = 2, . . .. It is easy to verify that f is a

bijection. (Students are requested to verify by themselves).

Hence |Z| = ℵ0, i.e., Z is countable.

Example. 2.25 The open interval (0, 1) is equipotent to R>0 = (0,∞).

Define f : (0, 1) → R>0 by f(x) = x
1−x

, x ∈ (0, 1).

For x1, x2 ∈ (0, 1), x1 ̸= x2 ⇒ 1− x1 ̸= 1− x2 ⇒ 1
1−x1

̸= 1
x2

⇒ f(x1) ̸= f(x2). Hence f is

injective. Also if y ∈ R>0 put x = y
1+y

. Then 0 < x < 1 and f(x) = f( y
1+y

) =
y

1+y

1− y
1+y

=
y

1+y
1

1+y

= y. Hence f is surjective. Thus f is a bijection between (0, 1) and R>0.
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Remark. 2.26 It has been observed from the above two examples that an infinite set

can be equipotent with a proper subset of it. However it is not true that all infinite

subsets are equipotent. If X is an infinite set then it is never be equipotent with its power

set P (X). It is known for a finite set A, if |A| = n then |P (A)| = 2n. Following it the

cardinality of P (N) is denoted by 2ℵ0 .

2.2 Exercise

1. Verify whether the following functions are injective, surjective or bijective.

(a) f : R → R by f(x) = ex.

(b) f : R → R by f(x) = cos x.

(c) f : [−1, 1] → [0, 2π] by

f(x) = sin−1 x.

(d) f : R → R by f(x) = x2 + 8x+ 15.

(e) f : R → R by f(x) = x3.

(f) f : R → R by f(x) = x|x|.

(g) f : R → R by f(x) = x− [x].

2. Find f(A) where f and A are given by

(a) f : R → R defined by f(x) = x2, A = [−1, 1].

(b) f : R≥0 → R defined by f(x) =
√
x, A = [2, 4].

(c) f : R → R defined by f(x) = [x], A = [0, 4).

(d) f : R → R defined by f(x) = x|x|, A = [−2, 2].

3. Find f−1(B) where f and B are given by

(a) f : R → R defined by f(x) = ax2 − 2bx− a, B = {0}.

(b) f : R → R defined by f(x) = sinx, B = [0, 1√
2
].

(c) f : R → R defined by f(x) = tan x, B = [−1, 1].

4. For f : X → Y and A ⊂ X prove that A ⊂ f−1(f(A)).

5. For f : X → Y and B ⊂ Y prove that B = f(f−1(B)).

6. If f : X → Y is injective and A,B ⊂ X, prove that f(A−B) ⊂ f(A)− f(B).

7. If f : X → Y and C,D ⊂ Y , prove that f−1(C −D) = f−1(C)− f−1(D).

8. Let f : X → Y be surjective and g, h : Y → X be such that g ◦ f = h ◦ f . Then

prove that g = h.

9. Let h : Y → X be injective and f, g : X → Y be such that h ◦ f = h ◦ g. Then

prove that f = g.
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3 Theory of numbers

The natural numbers 1, 2, 3, . . . are also called the positive integers. The set of positive

integers is denoted by N. The positive integers together with the negative of integers and

zero are called integers and the set of integers is denoted by Z.

Theorem. 3.1 The set N has the following properties:

1. Every natural number n has a successor n+ 1,

2. Every natural number n except n = 1 has a predecessor n− 1,

3. Mathematical Induction: If M ⊂ N satisfying the properties (i) 1 ∈ M and (ii) if

n ∈ M then its successor n+ 1 ∈ M , Then M = N.

The usual ordering relation ≤ on N is a total order. N also possesses the well ordering

property which states that

Theorem. 3.2 (Well Ordering Property) Every non-empty subset of the set of

non-negative integers has a least element (first element).

Theorem. 3.3 (Archimedean Property) If a, b are a positive integers then there is

a positive integer n such that an > b.

We shall study the theorems stated above in future. Here we shall apply the above results

whenever necessary.

3.0.1 Divisibility

Definition. 3.4 If a, b are integers then b is called divisible by a or equivalently a divides

b if there exists an integer n such that b = an. If a divides b it is denoted by a | b. If a

does not divide b then it is written as a ∤ b.

Example. 3.5 It is easy to see that 2 | 8, 11 | 132, 17 | 306 etc. We also have 3 ∤ 10,
12 ∤ 100, 13 ∤ 122 etc.

Theorem. 3.6 For integers a, b, c, d the following holds:

1. a | 0, 1 | a and a | a.
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2. a | 1 if and only if a = ±1.

3. If a | b and c | d then ac | bd.

4. If a | b and b | c then a | c.

5. a | b and b | a if and only if a = ±b.

6. If a | b and b ̸= 0 then |a| ≤ |b|.

7. If a | b and a | c then for any integers x, y, a | (bx+ cy).

Proof. Proof is 1 and 2 are immediate. For 3, there exists integers x, y such that

b = ax, d = cy, hence bd = (xy)(ac). Since xy is an integer we have ac | bd.

For 4, there are integers x, y such that b = ax, c = by, hence c = a(xy) showing a | c.

For 5, there are integers x, y such that b = ax and a = by. Thus a = axy, hence xy = 1,

i.e., either x = y = 1 or x = y = −1, i.e., either b = a or b = −a. Hence a = ±b.

For 6, there exists integer x such that b = ax. Since b ̸= 0, x ̸= 0 and hence |x| ≥ 1. So,

|b| = |a|.|x| ≥ |a|.

For 7, there are integers p, q such that b = ap, c = aq. Hence for any integers x, y,

bx+ cy = apx+ aqy = a(px+ qy). Hence a | (bx+ cy). ■

Theorem. 3.7 (Division Algorithm) If a, b are integers with a > 0 then there exist

unique integers q, r such that b = aq + r where 0 ≤ r < a.

Proof. Consider the set

S = {b− ax : x is integer and b− ax ≥ 0}.

Since a ≥ 1, we have a|b| ≥ |b|. Thus taking x = −|b|, we have b− a(−|b|) = b+ a|b| ≥ 0

and hence b− ax ∈ S when x = −|b|. Thus S ̸= ∅.

By the well ordering property S has a least element say r. Let the value of x corresponding

to r be q, i.e., r = b − aq. Thus we get b = aq + r. Since r ∈ S, r ≥ 0. To show that

r < a, assume that r ≥ a then r1 = b − a(q + 1) = b − aq − a = r − a ≥ 0 and hence

r1 ∈ S and r1 ≤ r contradicting that r is the least element of S. Thus r < a.

To check the uniqueness of r and q assume that there are integers q, q′, r, r′, 0 ≤ r, r′ < a

such that b = aq + r = aq′ + r′. Then r − r′ = a(q′ − q), or |r − r′| = a|q − q′|.

Since 0 ≤ r < a and −a < −r′ ≤ 0, adding −a < r − r′ < a, i.e., |r − r′| < a. Hence

a|q − q′| = |r − r′| < a implies that |q − q′| < 1. Since q, q′ are integers, |q − q′| must be
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a non-negative integer and hence |q − q′| = 0, thus q = q′. This gives a|q − q′| = 0, i.e.,

|r − r′| = 0, hence r = r′. ■

Definition. 3.8 For integers a, b, a > 0, if b = aq + r by division algorithm, q ia called

the quotient and r is called the remainder in the division of b by a.

Example. 3.9 1. Taking a = 12, b = 30 we have 30 = 12 ·2+6. Hence quotient q = 2

and the remainder r = 6.

2. a = 13, b = 1427, 1427 = 13 · 109 + 10, so q = 109, r = 10.

3. a = 7, b = −24. So −24 = 7 · (−4) + 4. Here q = −4, r = 4.

4. a = 23, b = −1128. So −1128 = 23(−50) + 22. Hence q = −50, r = 22.

Corollary. 3.10 If a, b are integers with a ̸= 0 then there exist unique integers q and

r such that b = aq + r where 0 ≤ r < |a|.

Proof. The result has already been proved for a > 0, now take a < 0. Then |a| = −a > 0,

hence for b there exist unique q′, r′ such that b = |a|q′ + r′ where 0 ≤ r′ < |a|. Taking

q = −q′ and r = r′ we have b = qa+ r. ■

Example. 3.11 1. The square of any integer of the form 9k or 3k + 1.

If n is any integer then dividing n by 3 we have n = 3q + r where 0 ≤ r < 3.

Squaring, n2 = 9q2 + 6qr + r2 = 3q(3q + 2r) + r2. Since r can be 0, 1 or 2,

When r = 0 : n2 = 9q2 = 9k, where k = q2.

When r = 1 : n2 = 3q(3q + 2r) + 1 = 3k + 1, where k = q(3q + 2r).

When r = 2 : n2 = 3q(3q + 2r) + 4 = 3(3q2 + 2qr) + 3 + 1

= 3(3q2 + 2qr + 1) + 1 = 3k + 1, where k = 3q2 + 2qr + 1.

Thus in all cases n2 = 3k + 1 or n2 = 9k.

2. The cube of any integer of the form 9k or 9k + 1 or 9k + 8.
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If n is any integer, dividing by 3 by division algorithm m = 3q + r where r = 0, 1

or 2. So m3 = (3q + r)3 = 27q3 + 9qr(3q + r) + r3 = 9(3q3 + qr(3q + r)) + r3.

When r = 0 : m3 = (3q)3 = 9k, where k = 3q3.

When r = 1 : m3 = 9(3q3 + q(3q + 1)) + 1 = 9k + 1,

where k = 9(3q3 + q(3q + 1))

When r = 2 : m3 = 9(3q3 + 2q(3q + 2)) + 8 = 9k + 8,

where k = 9(3q3 + 2q(3q + 2)).

Example. 3.12 If an integer is simultaneously a square and a cube then it must be either

of the form 7k or 7k + 1. [For example 64 = 82 = 43]

Let n = m2 = l3. Now dividing m by 7 using division algorithm we have m = 7q1 + r1

where 0 ≤ r2 ≤ 6. Then n = m2 = 7(7q2 + 2qr1) + r21.

when r1 = 0 : m2 = 7(7q2)

when r1 = 1 : m2 = 7(7q2 + 2q) + 1

when r1 = 2 : m2 = 7(7q2 + 4q) + 4

when r1 = 3 : m2 = 7(7q2 + 6q) + 9 = 7(7q2 + 6q + 1) + 2

when r1 = 4 : m2 = 7(7q2 + 8q) + 16 = 7(7q2 + 6q + 2) + 2

when r1 = 5 : m2 = 7(7q2 + 10q) + 25 = 7(7q2 + 6q + 3) + 4

when r1 = 6 : m2 = 7(7q2 + 12q) + 36 = 7(7q2 + 6q + 5) + 1.

Thus n = m2 can be expressed in the form of 7k or 7k + 1 or 7k + 2 or 7k + 4.

Again dividing l by 7 using division algorithm we have l = 7q + r2 where 0 ≤ r2 ≤ 6.

Then n = l3 = (7q)3 + 3.7qr2(7q + r2) + r32 = 7(49q3 + 3qr2(7q + r2)) + r32.

when r2 = 0 : l3 = 7(49q3)

when r2 = 1 : l3 = 7(49q3 + 3q(7q + 1)) + 1

when r2 = 2 : l3 = 7(49q3 + 6q(7q + 2)) + 8 = 7(49q3 + 6q(7q + 2) + 1) + 1

when r2 = 3 : l3 = 7(49q3 + 9q(7q + 3)) + 27 = 7(49q3 + 9q(7q + 2) + 3) + 6

when r2 = 4 : l3 = 7(49q3 + 12q(7q + 4)) + 64 = 7(49q3 + 12q(7q + 2) + 9) + 1

when r2 = 5 : l3 = 7(49q3 + 15q(7q + 5)) + 125 = 7(49q3 + 15q(7q + 2) + 17) + 6

when r2 = 6 : l3 = 7(49q3 + 18q(7q + 2)) + 216 = 7(49q3 + 18q(7q + 2) + 30) + 6.

Thus n = l3 must be of the form 7k or 7k + 1 or 7k + 6.

So combining these two, when n = m2 = l3 then n must be of the form 7k or 7k + 1.
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3.1 The Greatest Common Divisor

Divisibility of integers has already been defined and a number of properties has been

mentioned in Theorem 3.6. Here we define and study the properties of greatest common

divisors.

Definition. 3.13 Let a, b be two integers. An integer d is called a common divisor if

d | a and d | b. If at least one of a, b is non-zero, then the integer d is called the greatest

common divisor or gcd of a and b if

1. d > 0, d | a and d | b,

2. If c | a and c | b then c ≤ d.

The gcd of a and b is denoted by gcd(a, b) or by (a, b).

Example. 3.14 For a = −18 and b = 30 the positive divisor of a are 2, 3, 6, 9 and the

positive divisors of b are 2, 3, 5, 6, 10, 15. The common divisors are 2, 3 and 6. hence the

greatest common divisor is 6, i.e., gcd(−18, 30) = 6.

Theorem. 3.15 Given integers a, b, not both of them are zero, there exist integers x, y

such that gcd(a, b) = ax+ by.

Proof. Define a set S = {au+ bv : u, v are integers, au+ bv > 0}. Since a and b are not

both zero simultaneously, we may assume that a ̸= 0. If a > 0 then taking u = 1, v = 0,

au + bv = a ∈ S and if a < 0 then taking u = −1, v = 0, au + bv = −a ∈ S. Thus

S ̸= ∅. By well ordering principle S has a least element, say d. So there exist integers

u = x, v = y such that d = ax+ by.

By division algorithm, dividing a by d, we have a = dq + r where 0 ≤ r < d. Hence

r = a−dq = a− (ax+ by)q = a(1− qx)+ b(−yq) = ax′+ by′. If r > 0 then r ∈ S which is

a contradiction since d is the smallest element of S and r < d. Hence r = 0, i.e., a = dq,

i.e., d | a. Similarly d | b. Thus d is a common divisor of a and b.

Let c be a positive common divisor of a and b, i.e., c | a and c | b. Then by Theorem 3.6

c | (ax+ by), i.e., c | d. hence c = |c| ≤ |d| = d.

Thus gcd(a, b) = d = ax+ by. ■

Corollary. 3.16 For integers a, b, not both zero, T = {ax + by : x, y are integers} is

precisely the set of all the multiples of d = gcd(a, b).
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Proof. Since d | a and d | b it follows that d | (ax+ by) for all integers x any y. Thus d

divides every member of T , i.e., every member of T is a multiple of d.

Since d = ax0 + by0 for some integers x0, y0, a multiple of d is cd = c(ax0 + bx0) =

a(cx0) + b(cy0) = ax+ by ∈ T . Thus every multiple of d belongs to T . ■

Definition. 3.17 Two integers a, b are said to be relatively prime or prime to each other

if gcd(a, b) = 1.

Theorem. 3.18 Two integers a, b are prime to each other if and only of there exist

integers x, y such that ax+ by = 1.

Proof. If a, b are relatively prime then gcd(a, b) = 1. So there exist integers x, y such

that ax+ by = gcd(a, b) = 1.

Conversely, if there exist integers x, y such that ax+by = 1 and gcd(a, b) = d then ax+by

must be a multiple of d, i.e., d | (ax+ by), i.e., d | 1. Since d > 0 we have d = 1. Thus a

and b are relatively prime. ■

Corollary. 3.19 If gcd(a, b) = d then a
d
, b

d
are relatively prime.

Proof. Since gcd(a, b) = d there exist integers x, y such that d = ax + by. Hence
a
d
x + b

d
y = 1. This shows that gcd(a

d
, b
d
) = 1, i.e., the integers a/d, b/d are relatively

prime. ■

Corollary. 3.20 If gcd(a, b) = 1 and a | c, b | c then (ab) | c.

Proof. Since a | c, b | c we have c = am, c = bn for some integers m,n. Also since

gcd(a, b) = 1 there exist integers x, y such that ax+ by = 1. Now c = c · 1 = c(ax+ by) =

acx+ bcy = a(bn)x+ b(am)y = ab(nx+my). Thus (ab) | c.

Theorem. 3.21 (Euclid’s Lemma) If a | bc and gcd(a, b) = 1 then a | c.

Proof. Since gcd(a, b) = 1 there exist integers x, y such that ax+by = 1. Now c = c ·1 =

c(ax + by) = acx + bcy. Also since a | bc there exist an integer m such that bc = am.

Thus c = acx+ bcy = acx+ amy = a(cx+my). Thus a is a factor of c, i.e., a | c. ■

The above result may not be true if gcd(a, b) ̸= 1. For example, take a = 6, b = 9, c = 8.

Then a | bc but a ∤ b, a ∤ c.

Example. 3.22 1. It immediately follows that: gcd(a, 0) = |a|, gcd(a, a) = |a| and
gcd(a, 1) = 1.
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2. If a is any integer and n is a positive integer then gcd(a, a+ n) divides n.

If gcd(a, a + n) = d then d | a and d | (a + n). Hence d | (a + n− a), i.e., d | n. In
particular taking n = 1, gcd(a, a+ 1) = 1.

3. If for integers x, y, gcd(a, b) = ax+ by then gcd(x, y) = 1.

Let gcd(a, b) = d = ax+ by. then a
d
x+ b

d
y = 1, this shows that gcd(x, y) = 1.

3.2 Euclid’s Algorithm

In the present section we describe a practical method to find the ggc of two integers. We

start with the following lemma.

Lemma. 3.23 For integers a, b if b = aq + r, 0 ≤ r < a then gcd(a, b) = gcd(a, r).

Proof. Assume that d = gcd(a, b).Then d | a and d | b thus d | (b− aq), i.e., d | r. Hence
d is a common divisor of a and r. Let c be a positive common divisor of a and r. Then

c | a and c | r which implies that c | (aq + r), i.e., c | b. Thus c is a common divisor of a

and b and hence c ≤ b. Thus gcd(a, r) = d. ■

We now describe the Euclid’s algorithm of finding gcd of two integers a and b. Since for

any integers a, b, gcd(a, b) = gcd(|a|, |b|) without any loss of generality we may assume

that b ≥ a > 0.

Divide b by a, then by division algorithm we have b = aq1 + r1, 0 ≤ r1 < a. If r1 = 0

then a | b and hence gcd(a, b) = a. If r1 > 0 then divide a by r1 to get a = r1q2 + r2.

Again divide r1 by r2 and get r1 = r2q3 + r3. Proceed this process until the remainder rn

in some stage n vanishes. Hence we get,

b = aq1 + r1, 0 ≤ r1 < a

a = r1q2 + r2, 0 ≤ r2 < r1

r1 = r2q3 + r3, 0 ≤ r3 < r2
...

...

rn−2 = rn−1qn + rn, 0 ≤ rn < rn−1

rn−1 = rnqn+1 + 0,

Then it has been claimed that gcd(a, b) = rn, the last non-zero remainder. This follows

from the previous lemma gcd(a, b) = gcd(a, r1) = gcd(r1, r2) = · · · = gcd(rn−2, rn−1) =

gcd(rn−1, rn).

Since rn | rn−1 it follows that gcd(rn−1, rn) = rn. Thus gcd(a, b) = rn.
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Example. 3.24 1. Find the gcd of 14328 and 1732. Also find integers x, y such that

gcd(14327, 1732) = 14327x+ 1732y.

By division algorithm we get

14328 = 1732 · 8 + 472

1732 = 472 · 3 + 316

472 = 316 · 1 + 156

316 = 156.2 + 4

156 = 4 · 39 + 0

Thus gcd(14328, 1732) = 4. Now From the above divisions

gcd(14328, 1732) = 4 = 316− 2 · 156

= 316− (472− 316) · 2 = −472 · 2 + 316 · 3

= −472 · 2 + (1732− 472 · 3) · 3 = 1732 · 3− 472 · 11

= 1732 · 3− (14328− 1732 · 8) · 11

= −14328 · 11 + 1732 · 91.

Hence x = −11 and y = 91, i.e., gcd(14328, 1732) = 4 = 14328(−11) + 1732 · 91.

2. Find the gcd of 5304 and 48477. Also find integers x, y such that gcd(48477, 5304) =

48477x+ 5304y.

48477 = 5304 · 9 + 741

5304 = 741 · 7 + 117

741 = 117 · 6 + 39

117 = 39 · 3 + 0.

Hence gcd(5304, 48477) = 39. Form the above divisions,

gcd(5304, 48477) = 39 = 741− 117 · 6

= 741− (5304− 741 · 7) · 6 = −5304 · 6 + 741 · 43

= −5304 · 6 + (48477− 5304 · 9) · 43

= 48477 · 43− 5304 · 393.

Hence x = 43, y = −393, i.e., gcd(48477, 5304) = 39 = 48477 · 43 + 5304 · (−393).
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3.3 Congruences

Definition. 3.25 For integers a, b and m > 0 if m | (a− b) then we say a is congruent

to b modulo m and is denoted by a ≡ b (mod m). If m ∤ (a − b) we say that a is not

congruent to b modulo m and write as a ̸≡ b (mod m).

Example. 3.26 (i) 2 ≡ 22 (mod 5). since 2− 22 = −20 is divisible by 5. Similarly, (ii)

5 ≡ −7 (mod 6), (iii) 95 ≡ 0 (mod 19), (iv) −32 ≡ 19 (mod 17) etc. Also 22 ̸≡ −17

(mod 7), −51 ̸≡ 10 (mod 17), 89 ̸≡ 0 (mod 12) etc.

Theorem. 3.27 Let m > 0 and a, b, c, d be any integers. Then

1. a ≡ a (mod m).

2. If a ≡ b (mod m) then b ≡ a (mod m).

3. If a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m).

4. If a ≡ b (mod m) and c ≡ d (mod m) then a+ c ≡ b+ d (mod m).

5. If a ≡ b (mod m) and c ≡ d (mod m) then ac ≡ bd (mod m).

6. If a ≡ b (mod m) and d | m, where d > 0 then a ≡ b (mod d).

7. If a ≡ b (mod m) and where c > 0 then ac ≡ bc (mod mc).

8. If a ≡ b (mod m) then for any positive integer k, ak ≡ bk (mod m)

Proof. 1. Immediate.

2. a ≡ b (mod m) ⇒ m | (a− b) ⇒ m | (b− a) ⇒ b ≡ a (mod m).

3. a ≡ b (mod m) ⇒ m | (a − b) and b ≡ c (mod m) ⇒ m | (b − c). Hence m |
(a− b) + (b− c), i.e., m | (a− c). Thus a ≡ c (mod m).

4. a ≡ b (mod m) ⇒ m | (a − b) and c ≡ d (mod m) ⇒ m | (c − d). Thus m divides

(a− b) + (c− d), i.e., m | (a+ c)− (b+ d). Hence a+ c ≡ b+ d (mod m).

5. a ≡ b (mod m) ⇒ m | (a − b) ⇒ a − b = km for some integer k and c ≡ d

(mod m) ⇒ m | (c− d) ⇒ c− d = lm for some integer l. Thus ac = (b+ km)(d+ lm) =

bd+m(bl + dk + klm), i.e., ac− bd = m(bl + dk + klm), which shows that m | (ac− bd).

Thus ac ≡ bd (mod m).

6. a ≡ b (mod m) ⇒ m | (a − b). Since d | m, where d > 0 we have d | (a − b). Hence

a ≡ b (mod d).
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7. a ≡ b (mod m) ⇒ m | (a − b). For c > 0 we have mc | c(a − b), i.e., mc | (ac − bc).

Thus ac ≡ bc (mod m)c.

8. This follows by repeated application of 5 above taking c = a and d = b. ■

Theorem. 3.28 For integers a, b and m > 0, a ≡ b (mod m) if and only if a and b leave

the same non-negative remainder when divided by m.

Proof. Assume that a ≡ b (mod m). Then a − b = mk for some integer k, thus

a = b + mk. Now, dividing b by m by division algorithm we have b = mq + r where

0 ≤ r < m.

Hence a = b +mk = mq + r +mk = m(q + k) + r where 0 ≤ r < m. Thus both of a, b

leave the same remainder r when divided by m.

Conversely, assume that both of a, b leave the same remainder when divided by m. Then

a = mq1 + r, b = mq2 + r and hence a − b = m(q1 − q2), i.e., m | (a − b). Thus we have

a ≡ b (mod m). ■

Cancellation is allowed in congruences in some special conditions.

Theorem. 3.29 If for integers a, b, c, ac ≡ bc (mod m) then a ≡ b (mod m
d
) where

d = gcd(c,m).

Proof. ac ≡ bc (mod m) implies that ac−bc = km for some integer k. Since gcd(c,m) =

d there exist integers p, q such that c = pd,m = qd and gcd(p, q) = 1. Thus apd− bpd =

kqd, i.e., (a − b)p = kq. This shows that q | (a − b)p. Since gcd(p, q) = 1, by Euclid’s

Lemma, q | (a− b), i.e., a ≡ b (mod q). But q = m
d
. hence the result holds. ■

Two immediate consequences of the above result are the following.

Corollary. 3.30 If ac ≡ bc (mod m) and gcd(c,m) = 1 then a ≡ b (mod m).

Corollary. 3.31 If ac ≡ bc (mod p) where p is prime and p ∤ c then a ≡ b (mod p).

Theorem. 3.32 If f is a polynomial function with integer coefficient and a ≡ b (mod m)

then f(a) ≡ f(b) (mod m).

Proof. Let f(x) = c0 + c1x + c2x
2 + · · · + cnx

n, where c0, c1, . . . , cn are integers. Now

a ≡ b (mod m) implies that ak ≡ bk (mod m) for all positive integer k. Also for integers

ck, a
k ≡ bk (mod m) gives cka

k ≡ ckb
k (mod m). Thus adding from k = 0 to n,

c0 + c1a+ c2a
2 + · · ·+ cna

n ≡ c0 + c1b+ c2b
2 + · · ·+ cnb

n (mod m),
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i.e., f(a) ≡ f(b) (mod m). ■

Example. 3.33 If xnxn−1 . . . x1x0 is the decimal representation of a number m, where

x0, x1, . . . xn ∈ {0, 1, 2, . . . , 9}, then m is divisible by 9 if and only if x0 + x1 + · · ·+ xn is

divisible by 9.

Let f(x) = x0+x1x+x2x
2+ · · ·+xnx

n. Then f is a polynomial with integer coefficients.

We have m = 10nxn +10n−1xn−1 + · · ·+10x1 + x0 = f(10) and f(1) = x0 + x1 + · · ·+ xn.

Since 10 ≡ 1 (mod 9) we have f(10) ≡ f(1) (mod 9), i.e., m ≡ (x1 + x2 + · · · + xn)

(mod 9). Hence m is divisible by 9 if and only if m ≡ 0 (mod 9) if and only if x1 + x2 +

· · ·+ xn ≡ 0 (mod 9) if and only if x1 + x2 + · · ·+ xn is divisible by 9.

For example, if m = 403713 = 4 · 105 + 0 · 104 + 3 · 103 + 7 · 102 + 1 · 101 + 3. Then m

is divisible by 9 if and only if 4+ 0+ 3+ 7+ 1+ 3 = 18 is divisible by 9, which is true.

Thus 403713 is divisible by 9.

Example. 3.34 If xnxn−1 . . . x1x0 is the decimal representation of a number M , where

x0, x1, . . . xn ∈ {0, 1, 2, . . . , 9}, thenM is divisible by 11 if and only if x0−x1+· · ·+(−1)nxn

is divisible by 11.

Let f(x) = x0+x1x+x2x
2+ · · ·+xnx

n. Then f is a polynomial with integer coefficients.

Note that 10 ≡ −1 (mod 11). Hence f(10) ≡ f(−1) (mod 11). But f(10) = M and

f(−1) = x0 − x1 + x2 − · · ·+(−1)nxn. Hence M is divisible by 11 if and only if x0 − x1 +

· · ·+ (−1)nxn is divisible by 11.

Example. 3.35 Find the remainder when 220 is divided by 41.

Note that 25 = 32 and 32 ≡ (−9) (mod 41). Hence (25)2 ≡ (−9)2 (mod 41), i.e., 210 ≡ 81

(mod 41). Also 81 ≡ −1 (mod 41). Hence 210 ≡ (−1) (mod 41). This gives (210)2 ≡
(−1)2 (mod 41), i.e., 220 ≡ 1 (mod 41). Hence the remainder is 1 when 220 is divided by

41, or equivalently, 220 − 1 is divisible by 41.

Example. 3.36 Find the remainder when 250 is divided by 7.

23 = 8 and 8 ≡ 1 (mod 7). Thus 23 ≡ 1 (mod 7). Thus (23)16 ≡ 116 (mod 7), i.e.,

248 ≡ 1 (mod 7). Also 22 ≡ 22 (mod 7). Thus 248 · 22 ≡ 1 · 22 (mod 7). Hence we have ,

250 ≡ 4 (mod 7), i.e., the remainder is 4 when 250 is divided by 7.

Example. 3.37 Find the remainder when 4165 is divided by 7.
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Here 41 ≡ −1 (mod 7). Hence 4165 ≡ (−1)65 (mod 7), i.e., 4165 ≡ −1 (mod 7). Thus

4165 +1 is divisible by 7. This gives 4165 +1− 7 is divisible by 7, i.e., 4165 − 6 is divisible

by 7. Hence the remainder is 6 when 4165 is divided by 7.

Example. 3.38 Find the remainder when 1! + 2! + · · ·+ 100! is divided by 8.

For all k ≥ 4, k! = 4!× 5× · · · × k. Since 4! = 24 is divisible by 8, k! is divisible by 8 for

all k ≥ 4. Hence k! ≡ 0 (mod 8) for all k ≥ 4. Thus,

1! + 2! + 3! + 4! · · ·+ 100! ≡ 1 + 2 + 6 + 0 + · · ·+ 0 (mod 8)

or, 1! + 2! + 3! + 4! · · ·+ 100! ≡ 9 (mod 8).

Also 9 ≡ 1 (mod 8). Hence 1! + 2! + 3! + 4! · · ·+100! ≡ 1 (mod 8). Hence the remainder

is 1 when 1! + 2! + 3! + 4! · · ·+ 100! is divided by 8.

Example. 3.39 Find the remainder when 312 + 512 is divided by 13.

33 = 27 ≡ 1 (mod 13). Hence (33)4 ≡ 14 (mod 13), i.e., 312 ≡ 1 (mod 13).

Also 52 ≡ −1 (mod 13), hence (52)6 ≡ (−1)6 (mod 13), i.e. 512 ≡ 1 (mod 13).

Adding 512 +312 ≡ 1+ 1 (mod 13), or 512 +312 ≡ 2 (mod 13). Hence the remainder is 2.

Example. 3.40 Find the last two digits of 99
9
.

The last two digits of a number is the remainder when it is divided by 100.

Now, 9 ≡ −1 (mod 10) therefore 98 ≡ (−1)8 = 1 (mod 10). Multiplying by 9, 99 ≡ 9

(mod 10). Thus 99 = 9 + 10k for some integer k and hence 99
9
= 99+10k = 99 · 910k.

910 = (−1 + 10)10 = (−1)10 +10 C1(−1)9 · 101 +10 C2(−1)8 · 102 + · · ·+ 1010

= 1−10 C1 · 101 +10 C2 · 102 + · · ·+ 1010

≡ 1(mod100),

since from the second term onward each term is congruent to zero mod 100. Hence for

each positive integer k, 910k ≡ 1 (mod 100).

Also

99 = (−1 + 10)9 = (−1)9 +9 C1(−1)8 · 10 +9 C2(−1)7 · 102 + · · ·+ 109

= −1 + 90 +9 C2(−1)7 · 102 + · · ·+ 109

≡ 89(mod100),
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since from the third term onward each term is congruent to zero mod 100.

Hence 99
9
= 99 · 910k ≡ 89 · 1 (mod 100), i.e., 99

9 ≡ 89 (mod 100). Thus the last two

digits of 99
9
is 89.

3.3.1 Exercise

1. Find the remainder when 224 is divided by 17.

2. Find the remainder when 3287 is divided by 23.

3. Find the remainder when 1135 is divided by 13.

4. Show that 244 − 1 is divisible by 89.

5. Find the remainder when 17341 is divided by 5.

6. If a is an odd integer then prove that a2 ≡ 1 (mod 8).

3.4 Linear Congruence Equation

Definition. 3.41 Let m be a fixed positive integer. A set of integers {a1, a2, . . . , ak} is

called a complete residue system modulo m if

1. ai ̸≡ aj (mod m) for all i ̸= j,

2. For every integer n there is unique ai such that n ≡ ai (mod m).

Example. 3.42 1. For a fixed positive integer m, the numbers 0, 1, 2, . . . ,m− 1 form

a complete residue system modulo m.

2. The numbers 2, 7, 10, 18, 22, 26, 34 form a complete set of residues modulo 7. It can

be observed that dividing each number by 7 leaves seven remainders 0 to 6.

Definition. 3.43 For integers a ̸= 0, b, n > 0 an equation of the form ax ≡ b (mod n)

is called a linear congruence.

An integer x0 is called a solution of the above linear congruence if ax0 ≡ b (mod n).

Example. 3.44 The expression 3x ≡ 9 (mod 12) is a linear congruence equation. Here

x0 = 3, x1 = 7 and x2 = 15 are three solutions of the linear congruence. It can be

observed that the solutions 3 and 15 are congruent modulo 12, however the solutions 3,
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7 are not congruent modulo 12. They are called non-congruent solutions and treated as

distinct solutions.

Theorem. 3.45 A linear congruence ax ≡ b (mod n) has a solution if and only if

gcd(a, n) | b. If d = gcd(a, n) then there are d non-congruent solutions.

Proof. The congruence ax ≡ b (mod n) has a solution if and only if n | (ax− b), i.e., if

and only if there is integer y such that ax− b = ny, or ax− ny = b.

Since d = gcd(a, n) there exist integers r, s such that a = rd, n = sd and gcd(r, s) = 1.

Assume that d | b. So b = cd for some integer c. Since d = gcd(a, n) there exist

integers x0, y0 such that d = ax0 + ny0. Multiplying by c we have, cd = cax0 + cny0, or,

b = a(cx0)−n(−cy0) which shows that a(cx0) ≡ b (mod n). Thus cx0 is a solution of the

congruence.

Conversely, let the linear congruence ax ≡ b (mod n) have a solution, say x0. Hence there

exists integer y0 such that ax0−ny0 = b, i.e., rdx0−sdy0 = b, i.e., d(rx0−sy0) = b. Thus

d | b.

Now, assume that x0 and x1 be two solutions of the linear congruence ax ≡ b (mod n).

Then ax0 ≡ b (mod n) and ax1 ≡ b (mod n) and hence ax1 − ax0 ≡ 0 (mod n), or

n | a(x1 − x0), or sd | rd(x1 − x0), i.e., s | r(x1 − x0). Since gcd(r, s) = 1 we have

s | (x1−x0). We can write x1−x0 = st, or x1 = x0+ st = x0+
n
d
t, where t is any integer.

For t = t1, t2, two solutions are x1 = x0 +
n
d
t1 and x2 = x0 +

n
d
t2. Then x1 ≡ x2 (mod n)

if and only if n | n
d
(t1 − t2) i.e., if and only if d | (t1 − t2). Thus for t = 0, 1, 2, . . . , d − 1

we get the d incongruent solutions x0, x0 +
n
d
, x0 +

2n
d
, . . . , x0 +

n(d−1)
d

. Since any integer

t is congruent to one of 0, 1, 2, . . . , d − 1, these are the only incongruent solutions of the

linear congruence ax ≡ b (mod n). ■

Corollary. 3.46 If gcd(a, n) = 1 then the linear congruence equation ax ≡ b (mod n)

has a unique solution modulo n.

Proof. Here d = gcd(a, n) = 1 and 1 | b. Hence the result follows. ■

Example. 3.47 1. Solve the linear congruence equation: 9x ≡ 21 (mod 30).

Here gcd(9, 30) = 3 and 3 | 21. Hence the congruence has 3 incongruent solutions.

We shall find the gcd of 9 and 30.

30 = 9 · 3 + 3

9 = 3 · 3 + 0.
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Hence gcd(9, 30) = 3 = 9 · (−3)+30 · 1, i.e., 9 · (−21)+30 · 7 = 21. Hence x0 = −21

is a solution of 9x ≡ 21 (mod 30). Other solutions are −21 + 30
3
t where t = 1, 2,

i.e., x1 = −21 + 10 = −11 and x2 = −21 + 20 = −1. To get positive solutions we

add multiples of 10 and get 9, 19 and 29 are incongruent solutions.

2. Solve the linear congruence equation: 25x ≡ 15 (mod 29).

Here gcd(25, 29) = 1, hence the congruence has the unique solution. By division

algorithm,

29 = 25 · 1 + 4

25 = 4 · 6 + 1.

Hence 1 = 25− 4 · 6 = 25− (29− 25) · 6 = 25 · 7− 29 · 6. Thus 25 · 7 = 1 + 29 · 6,
or, 25 · (7 · 15) = 15 + 29 · 90. Hence 25 · 105 ≡ 15 (mod 29), i.e., x = 105 is the

solution of the congruence. Note that 105− 29 · 3 = 105− 87 = 18, hence 105 ≡ 18

(mod 29). Thus x = 18 is a solution congruent modulo 29.

3. Solve the linear congruence equation: 6x ≡ 15 (mod 21).

Here gcd(6, 21) = 3 and 3 | 15. Hence the system has 3 incongruent solutions.

By division algorithm, 21 = 6 · 3 + 3 which gives gcd(6, 21) = 3 = 21 · 1 − 6 · 3.
Multiplying by 15/3 = 5, 15 = 21 · 5 − 6 · 18, i.e., 6(−18) = 15 − 21 · 5. Hence

6(−18) ≡ 15 (mod 21) and so x = −18 is a solution of the linear congruence.

An arbitrary solution is x = −18 + 21
3
t = −18 + 7t, t is any integer. Thus the

smallest positive solution is obtained by putting t = 3, i.e., x = −18 + 21 = 3.

Other incongruent solutions are 3 + 7 = 10 and 3 + 7× 2 = 17.

4. Solve the linear congruence equation: 36x ≡ 8 (mod 102).

Here to find gcd(36, 102) we use Euclid’s algorithm. By division algorithm,

102 = 36 · 2 + 30

36 = 30 · 1 + 6

30 = 6 · 5 + 0

which gives gcd(36, 102) = 6 and 6 ∤ 8. Hence the system has no solution.

5. Solve the linear congruence equation: 140x ≡ 133 (mod 301).
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We use Euclid’s algorithm to find gcd(140, 301).

301 = 140 · 2 + 21

140 = 21 · 6 + 14

21 = 14 · 1 + 7

14 = 7 · 2 + 0.

Thus gcd(140, 301) = 7 and 133/7 = 19, i.e., 7 | 133. Thus the congruence has

seven incongruent solutions. Now,

7 = 21− 14 = 21− (140− 21 · 6)

= −140 + 21 · 7 = −140 + (301− 140 · 2) · 7

= 301 · 7− 140 · 15

Thus −140 · 15 = 7 − 301 · 7. Multiplying by 133/7 = 19 both sides we have

140(−15 × 19) = 133 − 301(7 × 19), i.e., 140(−285) = 133 − 301 × 133. This

shows that 301 divides 140(−285) − 133 i.e., 140(−285) ≡ 133 (mod 301). Hence

x0 = −285 is a solution of the linear congruence 140x ≡ 133 (mod 301). The other

incongruent solutions are x = −285 + 301
7
t, t = 1, 2, . . . , 6. Hence a complete set of

incongruent solutions is x = −285 + 43t, t = 0, 1, 2, . . . , 6.

3.4.1 Exercise

1. Solve the linear congruence equation: 5x ≡ 2 (mod 26).

2. Solve the linear congruence equation: 34x ≡ 60 (mod 98).

3. Solve the linear congruence equation: 8x ≡ 15 (mod 12).

4. Solve the linear congruence equation: 9x ≡ 16 (mod 24).

5. Solve the linear congruence equation: 24x ≡ 9 (mod 31).

3.5 Linear Diophantine Equations

A Diophantine equation is an equation whose coefficients are integers and the solutions

are also integers. As an example consider the following problem.
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Example. 3.48 A person has Rs 330 in cash, all in Rs 50/- and Rs 20/- notes. How

many he has Rs 50 notes and Rs 20 notes?

This is an example of diophantine equation, as all of its solutions must be integers, in fact

positive integers. There are several solutions as stated below:

Rs 50/- note Rs 20 note Total amount
1 14 330
3 9 330
5 4 330.

There are infinite many solutions, but for this purpose only these three solutions are

applicable, as the number notes can not be negative.

A Diophantine equation is called linear if the variables appear in fiest degree only.

3.5.1 Solution of Linear Diophantine Equations

Theorem. 3.49 A linear diophantine equation ax+ by = c has a solution if and only if

d | c where d = gcd(a, b).

Proof. Assume that d | c.

Since d = gcd(a, b) there exist integers x, y such that d = ax+ by. Now by condition d | c,
i.e., there exists integer k such that c = kd.

Hence c = kd = k(ax + by) = a(kx) + b(ky) = ax0 + by0. Thus x0 = kx, y0 = ky is a

solution set of the equation.

For the converse part, assume that the equation ax + by = c has a solution x0, y0. Then

c = ax0 + by0. Since d = gcd(a, b), a = ud, b = vd for some integers u, v. Hence

c = udx0 + vdy0 = d(ux0 + vy0) which shows that d | c. ■

The general solutions can be obtained as follows: Let x0, y0 be an initial solution and

x′, y′ be another set of solutions. Then ax0 + by0 = c = ax′ + by′ which gives a(x′ − x0) =

b(y0 − y′). Since d = gcd(a, b) there are integers u, v such that a = ud, b = vd and

gcd(u, v) = 1. Hence ud(x′ − x0) = vd(y0 − y′), i.e., u(x′ − x0) = v(y0 − y′).

The last identity shows that u | v(y0 − y′). Since gcd(u, v) = 1 by Euclid’s Lemma

u | (y0 − y′). Thus there exists integer t such that y0 − y′ = ut.

Hence u(x′−x0) = vut, i.e., x′ = x0+vt, or, x′ = x0− (b/d)t. Also we have y′ = y0−ut =

y0 − (a/d)t. The general solution is written as,

x = x0 +
b

d
t and y = y0 −

a

d
t.
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It can be shown taht for any integer t the above expression represents a solution.

Example. 3.50 Solve the Diophantine Equation. 56x+ 72y = 40.

gcd(56, 72) = 8 and 8 | 40, hence the system has solutions.

Using Euclid’s algorithm,

72 = 56 · 1 + 16

56 = 16 · 3 + 8

16 = 8 · 2 + 0.

Hence 8 = 56− 16 · 3 = 56− (72− 56) · 3 = 56 · 4− 72 · 3. Multiplying by 5 (=40/8) we

have, 40 = 56 · 20 + 72 · (−15). Hence x0 = 20, y0 = −15 is a solution of the equation.

The general solution is x = x0 + (72/8)t = 20 + 9t and y = y0 − (56/8)t = −15 − 7t.

Putting t = 0,±1,±2 etc. we write a few solutions:

t = 0, x = 20, y = −15

t = 1, x = 29, y = −22

t = −1, x = 11, y = −8

t = 2, x = 38, y = −29

t = −2, x = 2, y = −1.

Example. 3.51 Solve the Diophantine Equation. 24x+ 138y = 18.

gcd(24, 138) = 6 and 6 | 18. Hence the equation has solutions. By Euclid’s Algorithm,

138 = 24× 5 + 18, 24 = 18× 1 + 6, 18 = 6× 3 + 0.

Hence, 6 = 24− 18 = 24− (138− 24× 5) = 24× 6− 138, i.e., 24× 6 + 138× (−1) = 6.

Multiplying by 3, 24× 18 + 136× (−3) = 18. Hence x = 18, y = −3 is a solution.

The general solution is x = 18 + 138
6
t, y = −3 − 24

6
t, i.e., x = 18 + 23t, y = −3 − 4t, t is

integer.

3.5.2 Exercises

Solve the following Diophantine Equations.
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1. 221x+ 91y = 117.

2. 84x− 438y = 156.

3. 30x+ 17y = 300.

4. 54x+ 21y = 906.

5. 123x+ 360y = 99.

6. 158x− 57y = 7.

3.6 Prime Numbers

One of the most important theories and widely studied topics is the prime number. Here

we mention only an introductory result of the theory.

Definition. 3.52 An integer p > 1 is called a prime number or simply a prime if its

only positive divisors are 1 and p itself. An integer greater than 1 which is not peime is

called a composite number.

Example. 3.53 The numbers 2, 3, 5, 7, 11, . . . are prime numbers, whereas 4, 9, 16, 25

etc are examples of composite numbers. It can be mentioned that the number 1 is neither

prime nor composite. Also 2 is the only even prime number.

Theorem. 3.54 If p is a prime and p | ab then either p | a or p | b.

Proof. If p | a then the result is proved. Assume that p ∤ a. Then gcd(p, a) = 1 and

hence by Euclid algorithm p | b. ■

Corollary. 3.55 If p | (a1a2 · · · an) then p | ak for some k = 1, 2, . . . , n.

Proof. This can be proved by induction on n, left to the student as an exercise.

Corollary. 3.56 If p, q1, q2, . . . , qn are all primes and p | (q1q2 . . . qn) then p = qk for

some k = 1, 2, . . . , n.

We conclude this section with the statement of Fundamental Theorem of Arithmetic.

Theorem. 3.57 (Fundamental Theorem of Arithmetic) Every positive integer n >

1 can be expressed as a product of primes in a unique way up to the order of occurrence

of the primes.

— ∗ —


