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MTMACORI3T: (Semester - 6)

Syllabus:

Unit-1 : Metric spaces: Definition and examples. Open and closed balls, neighbourhood, open set,
interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable
spaces. Sequences in Metric Spaces, Cauchy sequences. Complete Metric Spaces, Cantor’s theorem.

Unit 2 : Continuous mappings, sequential criterion and other characterizations of continuity, Uni-
form continuity, Connectedness, connected subsets of R. Compactness: Sequential compactness,
Heine-Borel property, Totally bounded spaces, finite intersection property, and continuous func-
tions on compact sets. Homeomorphism, Contraction mappings, Banach Fixed point Theorem and
its application to ordinary differential equation.

1 Metric space and related concepts

Metric space is the generalisation of the Euclidean spaces R", where the distance function

plays the crucial role to most of the concepts regarding continuity, convergence etc.

1.1 Basic Definitions, Open Sets and Closed Sets

DEFINITION. 1.1 Let X be a non-empty set and p: X x X — R be a function. p is said

to be a metric on X if the following conditions hold:

M1: For all z,y in X, p(z,y) > 0 and p(x,y) = 0 if and only if z = y.
M2: For all z,y in X, p(z,y) = p(y, x).

M3: For all z,y,z in X, p(x,y) < p(z,z) + p(z,y) — this rule is known as triangular

inequality.

If p is a metric on a set X then the pair (X, p) is called a metric space.
ExAMPLE. 1.2 1. Let R be the set of reals. We define p(z,y) = |x —y| Vx,y € R, then
p is a metric on R, called the usual metric on R and hence (R, p) is a metric space.

2. Let C be the set of complex numbers. If we define p(z1, 2z2) = |21 — 22| Vz1,22 € C,

then (C, p) is a metric space.
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3. Let R™ be the set of all n-tuples of reals. If we define

P(-Ta y) = Z(xl - yi)27 for all z = (371,.1'2, <o ,l‘n),y - (yla Y2, -, y'n,) € Rn7
then p is a metric on R", called the Fuclidean metric on R™ and hence (R", p) is a

metric space. This metric space is called the n-dimensional Fuclidean space.

4. Let B(X) be the set of all real valued bounded functions on a non-empty set set X.
If we define

p(f,9) =sup{|f(z) —g(z)| : x € X} forall f,g € B(X),

then p is a metric on B(X), called the supnorm metric on B(X) and hence (B(X), p)

is a metric space.

5. Let X be any non-empty set. We define p: X x X — R by

plz,y) = 0,ifz=y
= 1, ifz#y.

Then p is a metric on X. Such a metric space (X, p) is called a discrete metric space.

DEFINITION. 1.3 Let (X, p) be a metric space and a € X. Then the set
{r e X :pla,x) <r},

where r is a positive real number, is called an open ball or open sphere with center at a
and of radius r and is denoted by S, (a, p) or simply by S,(a) when no confusion about p
is likely to arise. The notations B,(a,r) or B(a,r) are also used to denote an open ball

with center at a and radius 7.

ExAMPLE. 1.4 1. In R, the open sphere with center at ¢ and radius r is S,(c) =
B(e,r) ={x € R: |x —¢| <r} = (c—r,c+r) which is a bounded open interval
in R. Also any bounded open interval (a,b) can be written as (a,b) = S,(c) where
r = I’_T“, the half of the length of the interval, and ¢ = “TH’, the mid-point of the

interval. Thus the open spheres in R are exactly the bounded open intervals in R.
r r
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b

2. In Euclidean plane R?, for any (a,b) € R? and for any r > 0,

Sr((a,b)) = {(z,y) €R*: ||(z,y) — (a,b)]| < r}
= {(z.y) eR*: V(z —a)? + (y— )2 <1}
= {(z,y) eR?*: (z —a)* + (y — b)* < r?}
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which is nothing but the the set of points lying inside the circle whose centre is at

(a,b) and radius is 7.

3. For a non-empty set X consider the metric space B(X). For f € B(X) and r > 0,

Se(f) = {9 € B(X) :sup{|f(z) —g(z)|: z € X} <r}
= {9€BX):|f(z) —g(z)| <rVze X}
= {geB(X): f(z)—r<glx) < f(z)+rVre X}

Thus, S, (f) is the set of all those members g of B(X) whose graph lies between those
of f —rand f+r.

4. Let X be a non-empty set equipped with discrete metric p. It is easy to verify that
fora e X and r > 0, Sy(a) ={a} if r <1 and S,(a) = X if r > 1.

(a,5)

[ [
(a) Open ball in R? with (b) Open ball in B([a,b]) with
center at (a,b) and radius r center at f and radius r

In the above, figure (a) is the open ball in R? which is actually an open circular disk with
center at (a,b) and radius r. The figure (b) is in the metric space B([a, b]) of the set of all
bounded functions defined in the closed interval [a,b] with supnorm metric, the open ball
Sy(f), centered at f and radius r. It considts of all the bounded functions g : [a,b] — R
such that f(z) —r < g(x) < f(x) + r, for all z € [a,b].

THEOREM. 1.5 Let (X, p) be a metric space. Let Sy, (a),Sy,(b) be two open spheres in
(X,p). Then

1. For each x in Sy, (a) there exists 61 > 0 such that S5, (x) C Sy, (a).

2. For each x in Sy, (a) NSy, (b) there exists 62 > 0 such that Ss,(z) C Sy, (a) N Sy, (D).
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ProOF. 1. If x € S;,(a) then p(a,z) < 1. Let 61 = 1 —p(a,x), then §; > 0. If y € S5, ()
then p(x,y) < 01 and hence p(a,y) < p(a,z) + p(z,y) < p(a,z) + 6 =r1. So, y € Sy, (a).
Thus S5, (x) C Sy, (a).

2. Let x € Sy, (a) NSy, (b). Then p(a,z) < m
and p(b,z) < ry. Choose

g = min{rl - p((l, ZL‘),TQ - p(b> ZL’)}

Clearly 02 > 0. If y € Ss,(x) then
p(xay) < 527 S0

pla,y) < pla,z) + pz,y)
< pla,x)+ o2
< pla,z) + (r1 — p(a, z))
= 7. e

Hence y € Sy, (a), i.e., S5,(x) C Sy, (a). Similarly we can show that Sy, (x) C Sy, (b). Thus
Ss,(x) C Sy, (a) N Sy, (D). [ |

DEFINITION. 1.6 Let (X, p) be a metric space, A C X and = € X. Then a is said to be
an interior point of A if there exists r > 0 such that S,(a) C A.

A set N C X is said to be a neighbourhood of a point x if x is an interior point of N.

THEOREM. 1.7 Let (X, p) be a metric space, for v € X we denote by N(x, p) or simply by
N, the set of all neighbourhoods of x. Then For all x € X,

1. Ny # 0 and x € N for each N € N.

2. Forall A,B C X, AD B and B € N, implies that A € N,.

3. Forall A,B C X, A, B € N, implies that AN B € N,.

4. If A € N, then there exists B € N, such that B C A and B € Ny for ally € B.

5. If A € N then there exists B € N, such that A € Ny for all y € B.

PROOF. 1. For any z € X,r > 0, Sy(z) C X and hence X € N,. So N, # . Also of
N € N, then there exists r > 0 such that S,(z) C N and hence z € N.

2. If B € N, then there exists 7 > 0 such that S,(z) C B. Since B C A, S,(x) C A, hence
A e N,.

3. A, B € N, implies that there exist 71,72 > 0 such that Sy, (z) C A and S,,(x) C B.
Let 7 = min{ry,r2}. Then S,(x) C AN B and hence AN B € N,.
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4. Let A C Ng, then there exists » > 0 such that S,(z) C A. Put B = S,(z). So B € N,
and B C A. If y € B we can find 71 > 0 such that S,,(y) C B (we take r1 =7 — p(z,y)).
Thus B € N(y).

5. Follows from 2 and 4. [ |

DEFINITION. 1.8 Let (X, p) be a metric space, a set V' C X is said to be an open set if it

is a neighbourhood of each of its points.
Every open sphere in a metric space is open set (Theorem 1.5(1))

THEOREM. 1.9 Let (X, p) be a metric space and T, denote the set of all open sets of
(X,p). Then

1. 0,X €7,
2. If V1,V €T, then V1NV € T,.

3. If{Vi:iel} CT,then U{V;:iel} €T,

ProOOF. 1. Clearly X is a neighbourhood of each of its points. Also it is vacuously true
that the empty set is a neighbourhood of each of its points. Thus X,0 € T),.

2. Let a e V1NV, ie. a € V] and a € Vo. Then V; € N, and Vo € N, and hence by
Theorem 1.7, V1 N V5 € N,. Since a has been chosen arbitrarily in Vi N Vs, it follows that
V1 N V3 is a neighbourhood of each of its points. Thus V1 NV, € 7.

3. Let {V; : i € I} be a subfamily of T, and a € U{V; : i € I}. Then there exists ig € I
such that a € V;,. Since V;, € T, and a € Vj, it follows that V;; € N,. Again since
Vie C U{V; : i € I} it follows that U{V; :i € I} € N,. Hence U{V; :i € I} € T. [ |

REMARK. 1.10 Intersection of an arbitrary collection of open sets need not be open.

ExaAMPLE. 1.11 For all n € N let I, denote the open interval (—%, %) Then each I, is
an open sphere (see Example 1.4 (1)) and hence is an open set in R. Note that N{I,, : n €
N} = {0}, which is not an open set. Thus even a countable intersection of open sets may

not be an open set.

DEFINITION. 1.12 Let (X, p) be a metric space, A C X. The set of all the interior points
of A is said to be the interior of A and is denoted by A°.

THEOREM. 1.13 Let (X, p) be a metric space, A C X, x € A. Then
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1. x € A° if and only if there exists an open set V C X such that x € V C A.

2. A is open set if and only if A = A°.

ProOOF. Follows from definition. [ |

THEOREM. 1.14 Let (X, p) be a metric space. Then

1. X°=X.

2. For AC X, A° C A.

3. If AC B C X then A° C B°.

4. If V is an open subset of X and A C X such that V C A then V C A°.
5. For AC X, (A°)° = A°.

6. For A,BC X, (AN B)° = A° N B°.

PRrROOF. 1. Follows from the fact that X is open set.
2. Follows from definition of A°.

3. If x € A° then there exists r > 0 such that S,(z) C A. Since A C B it follows that
Sy(x) C B and hence = € B°.

4. Follows from definition of interior point.

5. From above it immediately follows that (A°)° C A°. Also, if x € A° then there exists
r > 0 such that S.(x) C A. Since for any y € S,(z), A € Ny, it follows that S,(z) C A°
and hence = € (A°)°. Thus A° C (A°)°.

6. Since ANB C A, (AN B)° C A°. Similarly (AN B)° C B°. Thus (AN B)° C A°N B°.
Also, if x € A° N B° then there exist 71,72 > 0 such that S,,(z) C A and S,,(z) C B.
Taking r = min{r, 72} we have S,(z) C AN B and hence z € (AN B)°. Thus A°N B° C
(AN B)°. |

THEOREM. 1.15 For A C X, where (X, p) is a metric space,
A°=U{V C X :V is open,V C A}.

PRrROOF. Let x € A°. Then there exists r > 0 such that S,(z) C A. Let V = S, (x), then
V is open set and hence x € U{V C X : V is open, V C A}, i.e.,

A° ¢ UW{VCX:Visopen,V C A}.
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Also, let z € U{V C X : V is open ,V C A}. Then there exists open set V' C X such that
x eV and V C A. Since V is open V C A° and hence x € A°, i.e.,

A° O UW{VCX:Visopen, ADV}.

Thus A° =U{V C X : V is open, A D V}. |

REMARK. 1.16 From the above result one can conclude that A° is the largest (with respect

to set inclusion) open set contained in A.

DEFINITION. 1.17 Let (X, p) be a metric space, A C X and a € X. Then a is said to be
a limit point of A if for all N € N,, (N — {a}) N A # (). The set of all the limit points of
A is called the derived set of A and is denoted by A’.

THEOREM. 1.18 Let A be a subset of a metric space (X,p), a € A. Then the following

statements are equivalent:

1.ac A
2. For allr >0, (Sr(a) —{a})NA#0.

3. Fach neighbourhood of a contains infinitely many elements of A.

PROOF. (1) = (2): Follows immediately since for any r > 0, S,(a) is a neighbourhood of

a.

(2) = (3): Assume (2) holds. If possible, suppose that there exists N € N, which contains
only finitely many distinct points of A, say x1,xs,...,x,. If any one of these points is a
we exclude it. Let r; = p(z;,a),1 < i < n. The for each i, r; > 0. Also since N € N,
there exists 7 > 0 such that S, (a) C N. Put r = min{r/,ry,r2,...,r,}. Then r > 0 and

Sy(a) contains no point of A — a contradiction to (2).

(3) = (1): Follows from definition of limit point. |

DEFINITION. 1.19 Let (X, p) be a metric space and A C X. A is said to be a closed set

if it contains all of its limit points, i.e., if A’ C A.

THEOREM. 1.20 Let (X, p) be a metric space and F C X. Then F is a closed set if and

only if its complement F° in X is an open set.

PROOF. Assume that F' is a closed set. Let x € F€¢ then x ¢ F. Since F is a closed
set, x is not a limit point of F; hence there exists r > 0 such that S,(z) N F # (. Thus

Sy(z) C F° which shows that z is an interior point of F¢, i.e., F© € N,. Since = has been
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chosen arbitrarily in F¢, it follows that F'° is a neighbourhood of each of its points. Hence

F€ is an open set.

Conversely, suppose that F¢ is an open set. Let z ¢ F, then x € F°. Since F° is open
F¢ e N,. Also F N (F°) = (), which shows that ¢ F'. Thus x ¢ F implies that = ¢ F”,
hence F/ C F, i.e., F is closed. [ |

THEOREM. 1.21 Let (X, p) be a metric space. If F, denotes the set of all closed sets, then

1. X,0 €3,
2. If F1, Iy ngp then F1 U Fy eg.‘p_
3. If{F;:iclI}CT,then {F;:icl}eT,.

PROOF. 1. Since 0, X € T, it follows that X,0 € F,.

2. If F1,F5 € F, then X — F}, X — F; € T, which implies that (X — F1) N (X — F») € T,
ie, X — (F1UF,) €T, Hence F1 UF; € F,.

3. If ;e JF,forallielthen X — F; € T, for all i € I. Hence U{X — F;:i € I} € Tp,
ie, (X —n{F:iel})eT, Thusn{F,:iel} e, [ |

DEFINITION. 1.22 Let A be a subset of a metric space (X, p). Then the set AU A’ is
called the closure of A in X and is denoted by A or by cl(A).

THEOREM. 1.23 A subset A of a metric space (X, p) is closed if and only if A = A.

PROOF. Assume A is a closed set. Then A’ € A and hence A = AU A’ = A. On the other
hand, A=A = AUA' = A= A" C A. Hence A is a closed set. |

THEOREM. 1.24 Let (X, p) be a metric space. Then

1. 0=0.

2. Forall AC X, AC A.

3. If ACc BC X then AC B.

4. For ABC X, AUB=AUB.

5 Forall AC X, A= A.

PRrOOF. 1. Immediate, since () = 0.

2. Follows from the definition of closure.
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3. AC B= A" C B’ and hence the result follows.
4. Since A C AUB, by (3) above, A C AU B. Similarly B ¢ AU B, hence AUB C AU B.

Also if * € X such that * € AU B then there exist r1,72 > 0 such that S, (z)NA =0
and Sp,(z) N B = (. Let » = min{ry,r2}. Then (S,(x) N A) U (S,(z) N B) = 0, ie.,
Sp(z)N(AUB)=0. So, ¢ AUB and hence AUB C AU B.

Thus AUB = AU B.

5. It follows from (2) above that A C A. Note that A = AU A’ = AUA’ = AU(A'U(A")) =
AU A U(A)Y = AU (A"). So to prove the reverse inequality, it is sufficient to show that
(A"Y c A. Let z € (A"). Then for any r > 0, S.(x) N A’ # (). Choose y € S.(z) N A’
Then by Theorem 1.5 (1) there exists 6 > 0 such that Ss(y) C Sr(z). Ss(y) being a
neighbourhood of y, since y € A’, Ss(y) contains infinitely many elements of A (Theorem
1.18) and hence S, (z) contains infinitely many elements of A. Thus z € A, i.e., (4") C A
This completes the proof. ]

THEOREM. 1.25 Let A C X, where (X, p) is a metric space. Then
A = N{F CX:F isclosed set, A C F}.

PROOF. Let ¢ A. Then there exists r > 0 such that S,.(z)NA =0, ie, A C X — S, ().
Put F = X —S,(x), then F'is a closed set containing A such that x ¢ F. Thus x ¢ N{F C
X : F is closed set, A C F'}. Hence

A D N{F CX:Fisclosed set, A C F}

Conversely, let x ¢ N{F C X : F is closed set, ' D A}. Then there exists a closed set
F C X such that FF D Aand x ¢ F. Then x € X — F. Since X — F is an open set it a
neighbourhood of z, also (X — F) N A = (). Thus z ¢ A. Hence

A C N{FCX:Fisclosed set, A C F}.

Hence the result. [ |

REMARK. 1.26 From the above result one can conclude that A is the smallest (with

respect to set inclusion) closed set containing the A.

1.1.1 Exercise

1. Show that interior of a finite set of R™ is empty set.

2. Show that the closure of a finite set is itself.
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3. Let (X, p) be a metric space. Define d : X x X — R by d(z,y) = % for all
x,y € X. Show that d is a metric on X. Show that a set V' is open in (X, p) if and

only if it is open in (X, d).

1.1.2 Subspaces of a metric space

A subset A C X, where (X, p) is a metric space, can be treated as a metric space whose

metric is induced from the metric p of X.

DEFINITION. 1.27 Let (X, p) be a metric space, A C X be a non-empty subset. Then
pa: Ax A— Ry defined by pa(a,b) = p(a,b) for all a,b € A, is a metric on A, called the
induced metric on A. The metric space (A, p4) is called a metric subspace of the metric

space (X, p).

EXAMPLE. 1.28 1. Q with usual metric is a subspace of R with the usual metric.

2. The real line can be identified with the subset R x {0} = {(x,0) : = € R} of R%
The usual metric on R? is the Euclidean metric d. The induced metric on R x {0}
is d((z,v), (y,0)) = /(z —y)2+ (0 — 0)2 = |z — y| which is the usual metric on R.
Thus R is a subspace of R2.

THEOREM. 1.29 Let (X, p) be a metric space, (Y, py) be a subspace of it. Then

1. ForyeY, andr >0, B,, (y,r) = By(y,r)NY.

2. A subset V.C 'Y is open in the subspace (Y, py) if and only if there is an open set
W in the metric space (X, p) such that V. =W NY.

PROOF. 1. € B, (y,7) <= x €Y and py(z,y) <r <= z €Y and p(z,y) <r <
zeY and x € By(y,r) <= x € B,(y,r)NY. Hence B,, (y,r) = B,(y,r)NY.

2. Assume V C Y is open in (Y, py). Choose z € V. Then x is an interior point of V', so
there exists 7, > 0 such that B, (z,r;) C V. Hence

V = U{By(z,m2):0 €V} = UBy(z,rp) NV iz eV}
= VN (U{By(z,ry) : x € V}) (by distributive law).

Putting W = U{B,(x,7) : ® € V}, we have W is an open set in (X,p) and V =Y NW.

Conversely, assume that V = W NY for some open set W in (X, p). To check that V is
an open set in (Y, py) take x € V. Then x € W and hence x is an interior point of W. So
there exists 7 > 0 such that B,(z,r) C W. Hence B,(z,r)NY C W NY which implies
that B,, (z,7) C V. Hence z is an interior point of V' with respect to py. Since z has

been chosen arbitrarily, V' is open in (Y, py). [
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REMARK. 1.30 A set open in a subspace need not be open in the original metric space.
For example Q is a subspace of R. Though as a subset of R, QQ is not an open set but as a
space Q is open. Similarly, consider the subspace [a, b] of R and consider the open interval
(c¢,d) where a < ¢ < b < d. Then (c,d) is an open set in R and hence (¢, d) N [a, b] = (c, b]

is open in the subspace [a,b]. But (c,b] is never an open set in R.

THEOREM. 1.31 Let (Y, py) be a metric subspace of the metric space (X, p). Then a set
F CY is closed in the subspace Y if and only if there exists a closed set C' C X such that
F=CnY.

PRrROOF. If FF = CNY for some closed set C' C Y then F is closed in (T, py).

Conversely, assume that F is a closed set in (Y, py). Let C' = clx(F'). Then C is a closed
subset of X. Since FF C C and F C Y it follows that FF C C NY. Conversely, choose
x € CNY. Then x € F U F’ where F’ denotes the derived set of F in (X, p). If z € F’
then for any € > 0, (Be(X,p) — {z}) N F # 0 and hence (B¢(X,p)NY —{z})NF # 0
(since x € Y)). This implies that (B¢(X, py) — {z}) N F # 0. Thus z is a limit point of F'
in (Y, py). Since F is closed in (Y, py) it follows that x € F. Thus CNY C F. Hence
F =CnNnY, where C is a closed set in (X, p). |

The following result immediately follows from the above result.
COROLLARY. 1.32 For a subset F C Y, cly(F) =clx(F)NY.

DEFINITION. 1.33 Let (X, p) be a metric space, a set Y C X is called a dense subset of
X if cl(Y) = X. In this case the subspace (Y, py) is called a dense subspace.

DEFINITION. 1.34 A metric space (X, p) is called a separable space if it has a countable

dense subset.
ExXAMPLE. 1.35 R with its usual metric is a separable space as Q is a dense subset of R.

EXAMPLE. 1.36 1. For every n € N the metric space R” with Euclidean metric p is a
separable space, Q" is a dense subspace of R".
2. In the metric space C([0,1]) of the real valued continuous functions defined on the

closed interval [0, 1], the set of all polynomial functions on [0, 1] is a dense subset.

1.2 Sequences, their convergence and Completeness of Metric spaces

DEFINITION. 1.37 A sequence in a set X is a function f: N — X. If f(n) = x, for all n

in N, then one usually denote this sequence by {z,}.
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DEFINITION. 1.38 Let {z,} be a sequence in a metric space (X, p), xo € X. Then zg is
said to be a cluster point of {x,} if for all € > 0, for all n € N there exists m € N such
that m > n and z,,, € Se(zo).

The sequence {x,} is said to converge to xo (or to be convergent with limit () if for all
€ > 0 there exists ng € N such that z, € Sc(xg) for all n > ng. In this case ¢ is said to
be the limit of the sequence {x,} and is written as lim z, = xo or limz,, = x( or simply

n—oo
as T, — xg.

It follows from the definition that if a sequence {x,} is convergent with z( as its limit
then z¢ is also a cluster point of it. However a sequence having a cluster point need not

be convergent.

ExAMPLE. 1.39 In R the sequence {x,}, defined by z,, = (=1)",n € N, has two cluster

points 1 and —1, ut it is not convergent.

THEOREM. 1.40 The limit of a sequence is unique.

PRrROOF. If possible let {z,} be a convergent sequence having two limits, say [ and m,
I # m. Choose € = %p(l,m). Then there exist N1, No € N such that z,, € S.(I) for all
n > N and x,, € Se(m) for all n > Na. Now, if n > max{Ny, Nao} then x,, € Sc(I)NSe(m).
This is a contradiction since S¢(I) N Sc(m) = 0. [ |

The next theorem follows immediately from definition of convergence.

THEOREM. 1.41 Let (X, p) be a metric space, {x,} be a sequence in X andl € X. Then

the following statements are equivalent:

1. {z,} converges to l.

2. For every neighbourhood N; of | there exists N € N such that for alln > N,n € N,
Ty € Nj.

3. For every open set V.C X containing | there exists N € N such that for all n >
N,neN, z, eV.

PRrROOF. 1 = 2: Assume 1 holds and NV, is a neighbourhood of I. Then there exists ¢ > 0
such that S¢(I) C N;. Since x, — [, there exists N € N such that for alln > N, n € N,
Zn € Se(l). Hence for all n > N, n € N, z,, € N;.

2 = 3 : Assume 2 holds. Then 3 holds immediately since any open set is a neighbourhood

of each of its points.

3 = 1: Assume 3 holds. Then 1 holds immediately since each open ball is an open set. B
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REMARK. 1.42 In view of the above theorem we observe that if we know the only the
neighbourhood system or only the open sets of the metric space (X, p) we can check
whether a sequence in it is convergent or not. This helps us to define convergence of a

sequence in terms of open sets or in terms of neighbourhood system.

PROBLEM. 1.43 1. Let {z,} be a sequence in a metric space (X, p) and a € X. Prove
that {z,} converges to a if and only if the sequence {d,,} of real numbers converges

to 0, where d,, = p(xy,a),n € N.

2. Let {z,} be a sequence in R? defined by z, = (o1 %), n € N. Show that the

sequence {z,} converges to (3,2).
3. Let {fn} be a sequence in BJ1,2] where for all n € N, f,, : [1,2] — R is defined by
fulx) = (14 2™)Y™. Let f(z) = x,Vx € [1,2]. Show that lim f, = f.

Solution: Problem 1 and 2 left as an exercise.

3. Note that for all n € N, for all z € [1,2],

L\ E
T <1 + )

xn
Thus f, € B[1,2] for all n € N. Also it is clear that f € B[1,2]. Also for all n € N, for all
x € [1,2],

< 2.9% <4

3=

[fu(@)] = (1 +2")

ny L 1.1 1
[fal2) = f(2)] = [ +2")n —zf = |2 |1+ )= —1] < 22» — 1.
So, sup |fu(z) — f(2)]| < 2\2% —1|Vn e N, ie., p(fn, f) < 2|2% — 1| for all n € N.
z€[1,2]

Hence lim,, 00 p(frn, f) =0, i, limy, o0 fr, = f
THEOREM. 1.44 Let A be a subset of (X,p), a € X. Then

1. a € A’ if and only if there exists a sequence {x,} of distinct elements of A which

converges to a.

2. a € A if and only if there exists a sequence {x,} in A which converges to a.

PRrROOF. 1. Assume that there exists a sequence of distinct elements of A converging to A.
Then for any € > 0 there exists N € N such that z,, € S¢(a) for all n > N. Hence for any
€ > 0, Sc(a) contains infinitely many elements of A. Thus a € A’

Conversely, let a belong to A’. Then for any € > 0, S¢(a) contains infinitely many elements

of A. Takinge = 1,1, %,... we can find inductively 21 € S1(a), 22 € S1(a)—{a1},...,2n €
2
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Si(a) — {x1,22,...xp—1},.... Thus we get a sequence {z,} in A such that z,, # z,

whenever m # n and p(z,,a) < L. Consequently {z,,} converges to 0.

2. Let a € A. Then for all n € N choose z,, € S1(a)N A. Thus we have chosen a sequence
{zn} in A such that p(a,z,) < 2, for all n € N. Let € > 0. Choose N € N such that
% < €. So, for all n > N, p(a,x,) < % < % <€, e, xy € Se(a) Yn > N. Hence z,, — a.

Conversely, let there exist a sequence in A converging to a. Then for any € > 0 there
exists N € N such that z, € Sc(a) for all n > N. Hence for any € > 0, Sc(a) N A # 0.
Thus a € A |

DEFINITION. 1.45 A sequence {x,} in a metric space (X, p) is said to be a Cauchy se-
quence if for e > 0 there exists a positive integer N such that p(x,,z,) < € for all
m,n > N.

THEOREM. 1.46 FEwvery convergent sequence in a metric space is Cauchy sequence.

PROOF. Let {z,,} be a convergent sequence with limit / in a metric space (X, p). Let € > 0.
Then there exists N € N such that for all n > N, p(z,,1) < §. Thus, whenever m,n > N,
(T, Tn) < p(xm, 1) + p(l,z,) < €/2+€/2 = €. Hence {x,} is a Cauchy sequence.

REMARK. 1.47 The converse of the above theorem is not true, i.e., there are metric spaces

having non-convergent Cauchy sequences.

EXAMPLE. 1.48 1. Consider the set X = R — Q, of irrational numbers with usual
metric on it. Let z, =1+ %,Vn € N. Then {z,} is a Cauchy sequence in X but

having no limit in X.

2. Let for a,b € R, P([a,b]) denote the metric space of all the polynomials defined on
la, b] with supnorm metric. Define p,(x) = (1 + 7)",x € [a,b],n € N. Then it can
be verified that the sequence {p,} is a Cauchy sequence in P([a,b]) and lim p,, does
not exist in P([a,b]). (In fact limp,(z) = €*,x € [a,b] and e® &€ P([a,b])).

DEFINITION. 1.49 A metric space (X, p) is said to be complete if each Cauchy sequence

in X converges to a point of X.

A metric space which is not complete is called an incomplete metric space.

ExaAMPLE. 1.50 The set of real numbers, the set of complex numbers with usual metric
are examples of complete metric spaces, whereas the set of rational numbers with usual

metric is an example of incomplete metric space.

THEOREM. 1.51 Let (X, p) be a complete metric space and A C X. Then (A,pa) is a

complete metric space if and only if A is closed in (X, p).
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PROOF. Suppose (A, pa) is complete, £ € A. Then there exists a sequence {z,} in A such
that limxz, = £ Clearly {z,} is a Cauchy sequence in A. By completeness of (A, p4)
there exists a in A such that limxz,, = a. Hence £ = a, i.c., £ € A. So A C A, ie., Ais

closed.

Conversely, let A be a closed subset of (X, p), {z,,} be a Cauchy sequence in (A, p4). Then
{z,,} is a Cauchy sequence in (X, p). Since (X, p) is complete there exists g € X such
that limx,, = 29. As z, € A for all n in N, 2y € A. Since A is closed A = A and hence
xo € A. Thus the Cauchy sequence {z,} in (A, pa) converges to a point of A. Hence
(A, pa) is complete. [ |

DEFINITION. 1.52 Let A be a non-empty subset of a metric space (X,p). Then A is
said to have a finite diameter if {p(x,y) : z,y € A} is bounded. Otherwise A is said to
have infinite diameter. If A has finite diameter, then sup{p(z,y) : z,y € A} is called the
diameter of A and is denoted by p(A). By definition we shall assume that p(f)) = —oc.

PROBLEM. 1.53 Show that for any A C X, where (X, p) is a metric space, p(A4) = p(4).

Solution: As A C A, it immediately follows that p(A4) < p(A).

If possible let p(A) S p(A). Choose € > 0 such that p(A) + ¢ < p(A). Then one can
choose x,y € A such that p(A) 4+ ¢ < p(x,y). Now, one can choose a,b € A such that
pla,x) < €/2 and p(b,y) < €/2. Also p(a,b) < p(A). Hence,

plz,y) > p(A)+e > pla,b)+e¢/2+¢€/2 > pla,b) + p(b,y) + pla,z)

> p(x,y) — a contradiction.
Thus p(A) £ p(A), i.e., p(4) > p(A).

PrROBLEM. 1.54 If {z,} is a sequence in a metric space (X,p) and p € X such that
S1(p)NSi(xy,) # 0 for all n € N, prove that lim z,, = p.

THEOREM. 1.55 If a Cauchy sequence has a cluster point then the sequence converges to
it.

PROOF. Let {z,} be a Cauchy sequence having a cluster point p. Let ¢ > 0 be given.
Then there exists k € N such that p(z,,z,) < €/2 for all m,n > k. Since p is a cluster
point, there exists s > k such that p(xs,p) < €/2. Thus, for all n > k, p(z,, k) <
p(xn, zs) + p(xs,p) < €/2+4€/2 = €. Thus limz,, = p. [ |

REMARK. 1.56 A Cauchy sequence can have at most one cluster point.
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THEOREM. 1.57 [Cantor Intersection Property] Let (X, p) be a metric space. Then the

followings are equivalent:

1. (X, p) is complete.

2. If {F,} is a sequence of non-empty closed sets in (X, p) such that F} D Fy D F3 D ---
and p(F,) — 0 as n — oo, then Ny F,, constitutes of exactly one point.

PROOF. 1. = 2.: Suppose that (X, p) is complete.

If possible, let F; N F,NF3N--- contains two distinct points, say,  and y. Then p(F,,) >
p(z,y) for all n € N, which shows that lim p(F,,) > p(x,y) > 0 — a contradiction. Thus

the intersection Fy N F, N F3--- can contain at most one point.

For each n € N choose z,, € F;,. (Such a choice is possible by axiom of choice). Let € > 0
be given. Then there exists k& € N such that p(F)) < e. If m,n > k then z,,, € F,,, C F},
and z, € F, C Fj, which shows that p(zm,,z,) < p(Fx) < €, ie., {x,} is a Cauchy
sequence. Since (X, p) is complete, there exists [ € X such that limz, = [. Let p € N.
Then for any n € N, 2,4, € F,. Also limz,, = limz,4, = [ Hence | € F, = F,. Since p
has been chosen arbitrarily, [ € F), for all n € N, thus p € N{F}, : n € N}.

2. = 1.: Conversely, suppose that condition 2 holds.

Let {z,} be a Cauchy sequence in (X,p). Put A, = {xn, Tpni1,Tnyo,...}, for all n =
1,2,3,.... Then Ay D Ay D A3 O ---. Let € > 0 be a real number. The there exists
k € N such that p(x,, z,) < €/2 for all m,n > k and hence p(4,) = p(A4,) < €/2 < ¢ for
all n > k. Thus p(A4,) — 0 as n — oco. By condition 2 there exists xo € N{A, : n € N}.
So xg is a cluster point of the sequence {x,}. Since {z,} is a Cauchy sequence, z, — .

Thus X, p) is complete. [ |

DEFINITION. 1.58 Let (X, p) is a metric space, A C X. Then A is said to be dense in
(X, p)if A= X. A is said to be nowhere dense if (A)° = .

PROBLEM. 1.59 Let (X, p) be a metric space, A C X.

1. Show that A is dense in (X, p) if and only if V N A # () for all open set V C X.
2. For any open set V C X, show that V N A # () if and only if V N A # 0.
3. Show that A is nowhere dense if and only if V' ¢ A for any open set V C X.

4. Prove that A is nowhere dense if and only if for all open set V' C X there exists
Sy(xz) C V such that S,(z)N A = 0.
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DEFINITION. 1.60 Let V be a vector space over the field of real or complex numbers. A
real valued function = +— ||z|| defined on V' is called a norm on V' if the following conditions

are satisfied:

1. For all z € V, ||z|| > 0 equality holds if and only if = 0.
2. For any scalar A for any z € V, || Az|| = |A| ||z

3. Forall z,y € V, [l +yl| < =[] + [ly[l-

A real or complex vector space with a norm ||, || defined on it is called a normed linear

space and is usually denoted by (V, ||, ||) or simply by V.
The following result can easily be verified.

THEOREM. 1.61 Let (V,||,||) be a normed linear space. Define p(z,y) = ||l — y|| for all
z,y € V. Then p is a metric on V.

DEFINITION. 1.62 The metric defined above is called metric induced by norm.

EXAMPLE. 1.63 1. In R™ we define

lol = \fa?+ad+- a2, Vo= (o1a2...,20) ERY,

one can verify (using Schwartz’s inequality) that ||, || is a norm on R™. This is called
the usual norm on R"™. It can easily be verified that the metric on R™ induced by

usual norm is nothing but the usual metric on it.

2. Recall that Bla,b], the set of all real valued bounded functions defined on [a, b] is a

linear space over the field of real numbers. For f € Bla,b] we define

I = sup{[f(z) :a <@ < b}

this norm is known as supnorm.

THEOREM. 1.64 Bla,b] is a complete metric space (with respect to supnorm metric).

PROOF. Let {f,} be a Cauchy sequence in Bla,b]. Let ¢ > 0 be given. Then there exists
a positive integer ny such that [|f, — fi| < § for all m,n > ny. Let x € [a,b], then
|fn(z) = fm)| < [[fa — fmll < § for all m,n > n;. This shows that for any = € [a,b],
{fn(z)} is a Cauchy sequence in R.

By completeness of R the sequence {f,(x)} is convergent. Let us define g : [a,b] — R by

g(x) = lim f,(x) Vo € [a,b].

n—oo
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It remains to show that g € Bla,b] and {f,} — g with respect to supnorm metric. Let
r € [a,b]. Since {fn(x)} — g there exists n, > n; such that |f,(z) — g(x)| < § for all
n > ng, in particular, |fy, (z) — g(z)| < §. Thus,

[fu(@) —g(@)] < [falz) (@) + [ fn. () — g(2)|

2e
=3 Va € [a,b] Yn > n;.
2e .

Thus, sup{|fn(z) —g(z)| :a < x <b} < 5 <€ Vn >mny,ie.,

lfn—gll < € Vn>n;.

This shows that {f,} — ¢ with respect to supnorm metric. Also for any x € [a,b],
l9(@)] < llgll < lfny = gll + | farl < €+ [[fn]l, which shows that g € Bla, b].

This completes the proof. |

Let us denote by Cfa,b] the set of all continuous real valued functions defined on [a, b].
Then C|a, b] C Bla,b].

THEOREM. 1.65 The set Cla,b] is closed in Bla,b].

Let f € Bla,b] such that f € Cla,b]. Let € > 0 be a real, choose g € C[a,b] such that
| f—gll < §. Let zg € [a,b], by continuity of g there exists § > 0 such that |g(x)—g(z0)| < §
for all x € (xg — 9,20 + 0) N [a,b]. Now for any =z in (z¢ — 0, ¢ + 6) N [a, b],

[f(@) = flzo)| < [f(x) = g(@)| + |g(x) — g(z0)| + [9(x0) — f(x0)|

< e+e+e
-+-+- =€
3 3 3

This shows that f is continuous at zg. Since xo has been chosen arbitrarily in [a,b], f is

continuous on [a,b]. Hence f € Cla,b].

Thus Cla, b] is closed in Bla, b]. |

THEOREM. 1.66 For a,b € R, Cla,b] is a complete metric space.

PROOF. C|a, b] is a closed subspace of Bla, b]. B|a,b| is a complete metric space. So Cla, b]

is a complete metric space.

PROBLEM. 1.67 1. Write down an independent proof of the fact that Cfa,b] is a com-

plete metric space with respect to supnorm metric.

2. Prove that R" is a complete metric space for allm =1,2,3....
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2 Continuity, Connectedness, Compactness and Fixed Point
Theorem

2.1 Continuity

Before going to the definition of continuity we introduce some notations and establish

some results.

Let f: X — Y be a function, A C X, B C Y then
f(A)={f(z):x€ A} and [ YB)={zecX:f(z)e B}
If Ay,Ay C X, By,By CY, then

(a) f(A1UA2) = f(A1) U f(A2)
(b) f(A1NA2) C f(A1) N f(A2)
(c) fTHBLUBy) = f1(B1)U f1(Ba)

(d) f7H(BiNBy) = f1(B1) N fH(Ba).

There are examples where equality in (b) does not hold.

DEFINITION. 2.1 Let (X, p), (Y, o) be two metric spaces, f : X — Y be a function, a € X.
f is said to be continuous at a if for any € > 0 there exists § > 0 such that, for all x € X,

plw.a) < 6 = o(f(), f(a)) <

The function f is said to be continuous on X if f is continuous at each point of X.

THEOREM. 2.2 Let f: (X,p) — (Y,0) be a function and a € X. Then the following are

equivalent:

1. f is continuous at a.

2. For all € > 0 there exists § > 0 such that f(Ss(a)) C Se(f(a)).

3. For all neighbourhood Ny, of f(a), f_l(Nf(a)) s a neighbourhood of a.
4. For any sequence {z,} in X, limx, = a = lim f(z,) = f(a).

. forall AC X,a€ A= f(a) € f(A).

)

PRrROOF. 1 = 2: Assume f is continuous at a, ¢ > 0. then there exists § > 0 such that for
allz € X, p(z,a) <0 = o(f(x), f(a)) <e. Soz € Ss(a) = p(x,a) <= o(f(x), f(a)) <
€ = f(z) € 5c(f(a)).
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2 = 3: Assume 2 holds, Ny, is a neighbourhood of f(a). Then there exists ¢ > 0
such that Sc(f(a)) C Ny). By 2 there exists 6.0 such that f(Ss5(a)) C Sc(f(a)), ie.,
f(Ss(a)) C Ny and hence Ss5(a) C f~ LNy (). Thus f~1(Ny(,) is a neighbourhood of

a.

3 = 4: Let 3 hold. {z,} be a sequence in X converging to a. Let ¢ > 0. Then S.(f(a))
is a neighbourhood of f(a). By 3 f~(Sc(f(a)) is a neighbourhood of a. Since z, — a,
there exists N € N such that z,, € f71(S.(f(a)) for all n > N. Thus f(z,) € Sc(f(a)) for
all n > N. Hence {f(z,)} converges to f(a).

4 = 5: Let a € A. Then there exists a sequence {z,} in A which converges to A. By
4 the sequence {f(x,)} converges to f(a). But {f(z,)} is a sequence in f(A), thus f(a)
belongs to f(A).

5 = 1: Assume 5 holds. If possible suppose that f is not continuous at a. Then there
exists € > 0 such that for all § > 0 there exists © € X such that p(x,a) < § but
o(f(x), ( )) > €. In particular, for all n € N there exists x,, € X such that p(z,,a) < %
but o(f(zn), f(a)) > €. Put A = {z1,2,...}. Then since p(z,,a) < =+ — 0 as n — o0,
€ A Also f(A) = {f(x1), f(x2),...} and Sc(f(a)) N f(A) = 0 which shows that
¢ f(A) — a contradiction. Thus 5 = 1. [

( )

DEFINITION. 2.3 Let (X, p),(Y,0) be two metric spaces, a € X and f : X — Y be a
function. f is said to preserve convergence at a if for any sequence {z,} converging to
a the sequence {f(x,)} converges to f(a). f is said to preserve nearness at a if for any
A C X, a € Aimplies that f(a) € f(A).

In view of the last result one can say that a function f is continuous at a point if and only

if it preserves convergence at that point if and only if it preserves nearness at that point.

THEOREM. 2.4 Let (X, p), (Y,0) be two metric spaces, f : X — Y be a function. Then

the followings are equivalent:
1. f is continuous on X.
2. For all open V. C Y, f~Y(V) is open in (X, p).

3. For all closed F CY, f~1(F) is closed in (X, p).

PROOF. 1 = 2 : Assume that 1 holds, V C Y is open. Let a € f~%(V). Then f(a) € V
Since V' is open there exists € > 0 such that S.(f(a)) C V. By continuity of f at a, there
exists § > 0 such that f(Ss(a)) C Sc(f(a)) C V which implies that Ss(a) C f~1(V). Thus
a is an interior point of f~1(V). Since a has been chosen arbitrarily in f~!(V'), each point

of it is interior point of it. Thus f~1(V) is open.
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2 = 3 : Assume that 2 holds, ' C Y is closed. Then V =Y — F' is an open set. By 2
f7H(V) is an open set in (X, p). But f~Y(V) = f"YY - F) = X — f~Y(F). Thus f~}(F)

is a closed set.

3 = 1: Assume that 3 holds, a € X. If possible, suppose that f be not continuous at a.
Then there exists € > 0 such that for all § > 0 there exists € X such that p(a,x) <
but o(f(a), f(x)) > €. In particular, taking § = %, we get for all n in N, 2, € X such
taht p(a,z,) < 1 but o(f(a), f(x,)) > €. Take A = {f(z,) :n € N} and F = A. Then
F is a closed set in (Y,0) and f(a) € F. Note that x, € f~!(F) for all n € N. Since
Tp — a, a € f~1(F) but a ¢ f~1(F) which shows that f~(F) is not a closed set — a
contradiction. Thus 1 holds. |

The next theorem states that the composition of two continuous functions is again a

continuous function.

THEOREM. 2.5 Let f: (X,p) = (Y,0) and g : (Y,0) — (Z, ) be continuous functions.
Then go f: (X, p) — (Z, ) is continuous.

PROOF. Let V be an open set in (Z, ). Then by continuity of g, g~ (V) is an open set
in (Y,0). Again by continuity of f, f~1(g~1(V)) is open in (X, p), i.e., (f L og ) (V) is
open in (X, p). Since (go f)~! = f~1og™!, the result follows. |

THEOREM. 2.6 Let f : (X,p) = (Y,0) and g : (Y,0) = (Z,u) be two functions, a € X.
If f is continuous at a and g is continuous at f(a) then go f is continuous is continuous

at a.

PROOF. Let {z,} be a sequence in X converging to a. Then by continuity of f at a the
sequence {f(x,)} in Y converges to f(a). Again by continuity of g at the point f(a)
the sequence {g(f(x,))} in Z converges to g(f(a)). Thus for every sequence {x,} in X
converging to a the sequence {(gof)(zy)} in Z converges to (go f)(a). So gof is continuous
at a. |

DEFINITION. 2.7 Let f : (X,p) — (Y,0) be a function. Then f is said to be uniformly
continuous on X if for all € > 0 there exists § > 0 (depending on € only) such that

Vay, g € X, p(z1,22) <6 = o(f(21), f(z2)) <e.

It can be noted that every uniformly continuous function is continuous. the converse is
not true, i.e., there are functions which are continuous but not uniformly continuous. An

example of such a function will be given later.

THEOREM. 2.8 If f: (X,p) = (Y,0) and g : (Y,0) — (Z, u) are two uniformly continuous
functions then go f : (X, p) — (Z, 1) is uniformly continuous.
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PRrROOF. Let € > 0 be a real number. By uniform continuity of g there exists d; > 0 such
that for all y1,y2 € Y, o(y1,92) < 01 = u(g9(y1),9(y2)) < €. Again by unifor continuity of
f there exists § > 0 such that for all z1,z2 € X, p(z1,22) < § = o(f(x1), f(z2)) < 01.

Thus for all z1,x2 € X, p(x1,72) <6 = o(f(21), f(z2)) < 1 = pu(g(f(z1)),9(f(z2))) <e,
ie., p(z1,22) <0 = pu(go f(x1)),g0 f(x2))) < e. Hence g o f is uniformly continuous.

Before going to next result we define the distance between two sets.

DEFINITION. 2.9 Let Let A, B be two nonempty subsets of a metric space (X, p). Then
the distance between two sets A and B is denoted by p(A, B) and is defined by

p(A,B) = inf{p(a,b):a € A be B}.
By definition we assume that p(A, () = oo. For z € X, we write p(z, A) for p({z}, A).

THEOREM. 2.10 Let (X, p) be a metric space, A C X, A # (). Then the function f : X —
R, defined by f(x) = p(x, A) Vo € X, is uniformly continuous.

PROOF. Let 1,22 € X and a € A. Then

p(x1,a) < p(x1, 2) + p(x2,0)

inf{p(z1,a) : a € A} < p(z1,22) + inf{p(x2,a) : a € A}
px1, A) < p(a1, 22) + pla2, A)

p(z1, A) = p(x2, A) < p(z1,72)

f(@1) = f(x2) < pla1, 22).

L

Similarly, f(x2)—f(z1) < p(x1,x2) and hence |f(x1)— f(z2)| < p(x1,x2) for all x1, 29 € X.

Thus f is uniformly continuous. |

COROLLARY. 2.11 Let A be a nonempty subset of a metric space (X, p). Then

A = {ze€X:p(x,A) =0}
PROOF. Let z € X and p(z, A) = 0. Then Sc(x) N A # () for all € > 0, thus x € A. Hence
{x € X :p(x,A) =0} C A. |

Note that f : X — R defined by f(z) = p(z, A) is continuous. Since for any x € A
f(z) =0, it follows that A C f~1({0}). Also {0} being a closed set f~1({0}) is closed and
hence A C f~1({0}) ={r € X : p(x,A) =0}. So A= {wr € X : p(x, A) = 0}.

An important property of a uniformly continuous function is that it carries Cauchy se-

quences to Cauchy sequences.
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THEOREM. 2.12 Let f: (X, p) — (Y,0) be a uniformly continuous function. If {z,} is a
Cauchy sequence in (X, p) then {f(zn)} is a Cauchy sequence in (Y, o).

PROOF. Let ¢ > 0 be a real. Then there exists § > 0 such that for all x,y € X,
o(f(z), fy)) < e whenever p(z,y) < d. Since {z,} is a cauchy sequence one can find
N € N such that p(xm,zy) < § for all m,n > N. Hence o(f(xm), f(zn)) < € for all
m,n > N. Thus {f(x,)} is a Cauchy sequence in (Y, 0). |

Below we give an example of continuous function which is not uniformly continuous.

EXAMPLE. 2.13 define f : R—{0} = R by f(z) = 1,V € R—{0}. Then f is continuous
on R — {0}. Note that {1} is a Cauchy sequence in R — {0}. Also note that {f(1)} = {n}

which is not a Cauchy sequence in R. Thus f is not uniformly continuous.

DEFINITION. 2.14 Let k be a positive integer. For all i € {1,2,...,k} let us define a map
7 : RF — R by mi(x) = x; Vo = (x1,x9,...,2%) € R*. 7; is called the i-th projection map
from R* to R.

THEOREM. 2.15 The projection map ; : RF 5 R, 1<i<k,is uniformly continuous.

PRrROOF. Ifx - (1'1,1'2,. . '7xl€)7y = (y17y27 o 7yk) € Rka 1 S 1 S kv then ‘ﬂ—’b(x) - ﬂ-l(y)‘ =
lx; — yi| < \/Zfzz(xj —y;j)?2 = ||z — y||. Hence the result follows. |

THEOREM. 2.16 Let (X, p) be a metric space, k be a positive integer and f : (X, p) — R¥

be a function. Then f is uniformly continuous if and only if m;jo f : X — R is uniformly

continuous for all i =1,2,... k.

If f is uniformly continuous then, since 7; is uniformly continuous for all ¢ = 1,2,... Kk,
it follows that m; o f is uniformly continuous for all i = 1,2, ..., k.

Conversely, suppose that m; o f is uniformly continuous for all ¢ = 1,2,...,k. Let ¢ > 0

be a real. Then for each i € {1,2,...,k} there exists §; > 0 such that for all z,y € X,
p(z,y) < 0; = |mio f(x)—mo f(y)| < ﬁ Let 6 = min{dy, d2,...,dx}. Then for z,y € X,

plr,y) <6 = |mof(z)—mof(y) < Vi=1,2,....k.

%

Hence if p(z,y) < ¢ then

1f(x) = fWIl = (mio f(z) —mio f(y)? < e

1

k
1=

This shows that f is uniformly continuous. |



Department of Mathematics, P R Thakur Govt College 24

2.2 Connectedness

DEFINITION. 2.17 A metric space (X, p) is said to be connected if there exist no open sets
G1,Go C X such that G1 # 0 # G2, G NGy =0 and X = G1 U Gy, i.e., if X can not be

expressed as a union of two disjoint non-empty open sets.

A metric space or its subset which is not connected is called disconnected.

It can be noted that if X is disconnected metric space then X is expressed as X = G1UGq,
where (G1, G2 are disjoint non-empty open sets. Thus G; = X — (9, since G2 is an open
set its complement (37 is a closed set. Thus (77 is an open set as well as a closed set, called

a clopen set. Similarly G is also a clopen set.

On the other hand if X contains a clopen set V, ) # V # X, Then V and X — V are both
non-empty open sets and X = V U (X — V) which shows that X is a disconnected metric

space.

Thus we conclude that

THEOREM. 2.18 A metric space is disconnected if and only if it contains a non-trivial

clopen set.

DEFINITION. 2.19 Let (X, p) be a metric space. A set A C X is said to be connected if
the subspace (A, p4) is connected.

THEOREM. 2.20 Let A be a subset of a metric space (X, p). Then A is connected if and
only if there exist no two open sets G1,Go C X such that A C G1UGs, ANG1 # 0 # ANG»
and ANG1 NGy = 0.

PROOF. Suppose that A is connected, i.e., (A4, p4) is a connected metric space. If possible,
let there exist open sets G1,G3 in (X, p) such that A C G1UGy, ANGy #0# ANG,
and ANGL NGy =0. Put Vi = ANG1,Vo = AN Gy. Then Vi, Vs are open sets in
(A, pa), i 0 # Vo, ViNVa =0 and A = V4 U V,. Thus (A, pa) is not connected — a

contradiction.

Conversely suppose that the condition of the theorem holds. We claim that A is connected.
If not, then (A, pa) is not connected and hence there exists non-empty open sets Vi, V5 in
(A, pa) such that A =V U Vs and Vi NV, = (). So there exists open sets G1,Ge in (X, p)
such that Vi = ANGy1, Vo = AN Gs. Thus we found two open sets G1,Go C X such that
ACGIUGy, ANGL#0# ANGs and ANG1 NGy = () — a contradiction. [ |

COROLLARY. 2.21 If A is an open set in a metric space (X, p), then A is connected if and
only if there exist no two open sets G1,Go C A such that A = G1UGs, G1 # 0 # G2 and
Gy NGy =10. .
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REMARK. 2.22 If (X, p) is a metric space and a € X then {a} is connected. Also the

empty subset of each metric space is connected.

EXAMPLE. 2.23 Let A be a set of rationals containing more than one point. Then A is

not connected in R.

Let z,y € A such that x < y. Choose an irrational ¢ such that x < & < y. Set
Gy = (—OO,f),GQ = (ﬁ,oo) Then A C G1UGy, ANGy 75 0 # ANGe and ANG1NGe = 0.

So A is not connected.

THEOREM. 2.24 Let I be a subset of R. Then I is connected if and only if I is an interval
mn R.

PROOF. Recall that a set I C R is called an interval if for all z,y € I for all z € R,
T < z <y implies that z € I.

Let I be a connected subset of R. We claim that [ is an interval of R. If not, then there
exists a,b € I, z € Rsuch that a < x <band z ¢ I. Set G; = (—o0,z), G2 = (z,00). The
G1, Gy are open sets in R such that I € G1UGy, ING1 # 0 # INGe and ING1 NGy = 0.

Thus I is not connected — a contradiction.

Conversely, let I be an interval of R. If I = () or I contains a single point then I
is connected. Let I contains more than one point. If possible, suppose that I is not
connected. Then there exist open sets G, G2 C R such that I € Gy UGs, INGy # () #
INGy and ING1NGy = 0. Choose a € ING1,b € ING5. Since a # b, without any loss of
generality we may assume that a < b. Let ¢ = “TH’. Then a < ¢ < b. 1 being an interval,
c € 1. So, either ¢ € Gy or c € Gy, also ¢ € Gy N Gs. If c € G1, we put a1 = ¢, by = b, if
¢ € Go, put a1 = a,b; = c¢. In any case we found reals a1 € G1,b1 € Ga, [a1,b1] C [a,b]

and by — a1 = 3(b—a).

Suppose that we have found reals ai,ao,...,a, € Gi, b1,ba,...,b, € Go such that
[a1,b1] D [a2,b2] D -+ D [an, by) and by —ay = b;—ka fork=1,2,...,n. Putec, = %(a,ﬁ—bn).
then ¢, € I C Gy UGy, Also ¢, ¢ G1 N Ga. If ¢, € Gy, put apny1 = ¢, b1 = by, if
cn € Go, put any1 = an,bpt1 = ¢n. Thus [an41,bp41] C [an,by] and by — aps1 =
5(bn — ay) = ﬁ(b —a).

Thus using induction we can conclude that there exist a sequence of closed intervals such
that a, € G1,b, € Gy Yn € N, [a,b] D [a1,b1] D [ag,b2] D --- and b, — ay, = b{—n“ Vn € N.
By Cantor’s Intersection property there exists £ € [an, by] Vn € N ie., ay, < & < b, Vn €
N. Also lim,, o0 G, = & = limy, 00 by, S0 € € I C G1 UGy, So either £ € G or € € Ga.

If £ € G then there exists € > 0 such that (§ — €, +¢€) C Gy. As limy,_,o0 b, = &, there
exists K € N such that b, € (£ —€,£ +€) for all n > K. hence b, € G1 N G2 N I for all
n > K — a contradiction to the fact that Gy N Go NI = (). Similarly, if £ € G then we
can show that there exists M € N such that a, € G NGy NI for all n > M — again a
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contradiction.

Thus I is connected. [ |

The next theorem states that continuity of function preserves the connectedness of sets.

THEOREM. 2.25 Suppose that f : (X, p) — (Y,0) be a continuous function and A C X be

connected. Then f(A) is a connected set in (Y, 0).

PROOF. If possible, suppose that f(A) is not connected. Then there exists open sets G1, G2
in (Y,0) such that f(A) C G1UGa, f(A)NG1 # 0 # f(A) NGy and f(A)NG1 NGy =
(. This implies that A C f~Y(G1) U f~HG2), An f7HGy) # 0 # An f~1(G2) and
AN f~YGy) N f~H(Ge) = 0. Since f~1(G1), f~1(G2) are open sets this shows that A is

not connected — a contradiction.

Thus f(A) is connected. u

PROBLEM. 2.26 Prove that if a continuous function f: R — R takes only rational values

then it is constant.

REMARK. 2.27 In view of the above two results we observe that if f : I — R is continuous,
where [ is an interval in R, then f(I) is also an interval in R, which is nothing but the

intermediate value theorem of real analysis.

THEOREM. 2.28 Let (X, p) be a metric space A C X. If A is connected and if AC B C A

then B is also connected.

PROOF. If possible, suppose that B is disconnected. Then there are open sets G1,Gy C X
such that BC G1 UG, BNGy# 0 # BNGyand BNG1 NGy = 0.

Choose x € BNG4. Then G is a neighbourhood of  and since x € A we have G1NA # (.
Similarly Go N A # (. Also since BN Gy NGy =0 and A C B we have ANG; NGy = 0.

This implies that A is disconnected — a contradiction. Hence B must be connected. W

COROLLARY. 2.29 If A is a connected subset of a metric space then A is also connected.

This follows by taking B = A in the above theorem. |

DEFINITION. 2.30 Let E be a subset of a metric space (X, p). Set
Arp = {ACE:Ais connected }.

Note that Ag is partially ordered by the set inclusion ‘C’. A maximal element of (Ag, C)

is called a component of E.
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Thus components of a set E are the maximal (w.r.t. set inclusion) connected subsets of

E,ie., AC FE is a component of F if and only if the following conditions hold:

1. A is a connected subset of E.

2. If B C F is connected and A C B then A = B.

The set E itself is connected if F is the only component of F.

In view of the Corollary 2.29 it follows that
THEOREM. 2.31 Components of a metric space are closed sets.

DEFINITION. 2.32 A set E C X, where (X, p) is a metric space, is called totally discon-
nected set if {{x} : x € E} is the set of components of E.

PROBLEM. 2.33 Prove that Q is totally disconnected.

THEOREM. 2.34 Let {E; :i € I} be a family of connected subsets of a metric space (X, p)
such that NicrE; # (0. Then U;cr E; is connected.

PROOF. If possible suppose that £ = U;c7F; be not connected. Then there exist open
sets G1,Go C X such that ENGy #0 # ENGy, E C GyUGs and ENG1 NGy = 0.
Choose £ € NierE;. Note that £ € E C G1 UG». Since ENG1 NGy = (), either £ € Gy or
£ € Gy. Now,

EecG = EcGINE Yiel = GINE; #0 Viel
= GaNE; =10 Vi el,
since F; N G1 N Ge = 0 Vi € I and each E; is connected .

Hence U{E; NGy : i € I} = 0, e, UW{E; : i € I} NGy =0, ie., ENGy =0 — a

contradiction.

Similarly, if £ € Gy we can show that E N Gy = () — again a contradiction. Hence E is

connected. [

DEFINITION. 2.35 Let (X, p) be a metric space, E C X and x € E. Define
C(z,E) = U{ACE:z€ A, and A is connected}.

Then by above result C(x, E) is a connected subset of F.

THEOREM. 2.36 Let (X, p) be a metric space, E C X. Then,
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1. For all z in E, C(x, E) is a maximal connected subset of E.
2. If C(x, E)NC(y,E) # 0 for some x,y € E then C(z,E) = C(y, E).

3. E=U{C(z,E) :z € E}.
PRrOOF.

1. Obviously C(z, E) is a connected subset of E. Let B be a connected subset of E
and = € E such that C(z,F) C B. So, x € B. Then by definition of C(z, E) we
have B C C(z, E). Hence C(z,E) = B, i.e., C(z, E) is a maximal connected subset
of E.

2. Let z,y € F be such that C(z,EF) N C(y,E) # 0. Then C(z,F) U C(y,E) is
a connected subset of E and also C(z,E) C C(z,E) U C(y, E). By maximality
of C(x,E) we have C(z,F) = C(z,E) U C(y, E). Similarly, we can show that
Cly,E)=C(z,E)UC(y,E). Thus C(z,E) =C(y, E).

3. Immediately follows from the fact z € C(z, E) C E. [

REMARK. 2.37 The above result shows that the set of components of subset of a metric

space forms a partition of the subset.

PROBLEM. 2.38 Let (X, p) be a metric space, E C X. Define a relation ‘~’ on E by
x~y <= there exists a connected set A C E such that {z,y} C A.

Show that ‘~’ is an equivalence relation on E and the equivalence class containing x is
C(z,E).

2.3 Compactness

DEFINITION. 2.39 Let (X, p) be a metric space. A family {V; : ¢ € I} of open sets in
(X, p) is said to be an open cover of X if X C U{V; : ¢ € I}. In a similar manner one can

define a closed cover or simply a cover.

If J C I such that X C U{V; :i € J}, then {V; : i € J} is called a subcover of {V; :i € I},

if J is a finite set this subcover is called a finite subcover.

DEFINITION. 2.40 A metric space (X, p) is said to be compact if every open cover of it
has a finite subcover. If A C X then A is called a compact set if (A, p4) is a compact

metric space.
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EXAMPLE. 2.41 1. Every finite metric space is compact.
2. R is not compact, {(—n,n) : n € N} is an open cover of R having no finite subcover.

3. Let X be an infinite set, consider the discrete metric d on X, i.e., d(z,y) = 1 if
x #y,dx,z) =0, for all z,y € X. Let A be an infinite subset of X. Then for any
r e X, 5’% () = {x}. Note that {S%(a) :a € X} is an open cover of A having no
finite subcover. So, A is not compact. However d(A) = 1 shows hat A is a bounded

set.

THEOREM. 2.42 Let (X, p) be a metric space, Y C X. Then following are equivalent:

1. 'Y is compact.

2. For each family {V; : i € I} of open sets in (X,p), Y C U{V; : ¢ € I} implies that
there exist i1,12,...,ip € I such thatY C V;; UV, U---UV; .

PROOF. 1 = 2 : Let Y be compact. Then (Y, py) is compact. Let {V; : i € I} be a
family of open sets in (X, p) such that Y C U{V; :i € I}. Put W; =V;NY forall i € I.
Then each W; is an open set in the subspace (Y, py). Also Y C U{W; : i € I}. Thus
{W; :i € I} is an open cover of Y. By compactness of Y there exist iy,i2,...,i, € I
such that Y ¢ W;, UW,;, U---U W, . Since W; C V; for all i € I, it follows that
Y CV;,, UV, U---UV, .

2 = 1: Assume 2 holds. Let {Vj : i € I} be an open cover of Y in (Y, py). Since for each
iin I, V; is open in (Y, py) there exists open set W; in (X, p) such that V; = W; NY. So,
Y c U{W, :i € I}. By 2 there exist i1, 42, ...,i, in I such that Y C W;, UW;, U---UW; .
This implies that Y C V;; UV;, U---UV; . Hence Y is compact. |

The next two results relates continuity with compactness.

THEOREM. 2.43 Let f: (X, p) — (Y,0) be a continuous function. If A C X is a compact
set then f(A) CY is also a compact set.

PROOF. Let {V; : ¢ € I} be a family of open sets in (Y, o) such that f(A) C U{V;:i € I}.
Then A C f~YW{V; : i € I}) = U{f~Y(V;) : i € I} Since f is continuous f~(V;) is

open in (X, p) for each ¢ € I. By compactness of A there exist 41,79, ...,4, € I such that
AcC Y Vi) U f~YVi,)U---U f~Y(V;,). This implies that f(A) C V;; UV, U---UV;,.
Hence f(A) is compact. [ |

THEOREM. 2.44 Let f : (X,p) = (Y,0) be a continuous function. If (X, p) is a compact

metric space then f is uniformly continuous.
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PROOF. Let € > 0. For any z in X, since f is continuous at z, there exists 6(x) > 0 such
that for all y in X,

y € Ss(a)(x) = o(f(2), f(y)) < (1)

N

Note that {Ssw) (z) : + € X} is an open cover of X. By compactness of X there are

2
T1,x2,...,Ty in X such that

X C SM (1‘1) U Sa(z2) (352) J---U Sts(zn) (l‘n)
2 2

Set 0 = mm{(s(w1 (9252), . 6(“ }. Clearly § > 0. Let z,y € X such taht p(z,y) < 4.
Then there exists ¢ = 1,2,...,n such taht z € Ssw,) (7;) C Ss,)(wi). Also p(ws,y) <
2

plxi,z) + p(a,y) < 5<“>+6< 0i) 4 25 = (). Thus y € Sy, (x:). Hence By (1),

o(f(x), f(y) < o(f(@), f(zi)) +o(f(z), f(y)) < 2-1- % =

Thus f is uniformly continuous. |

THEOREM. 2.45 Every compact subset of a metric space is closed.

PROOF. Let (X, p) be a be a metric space, A C X be compact. Choose z € X — A It
is sufficient to show that x is not a limit point of A. Now, for all a € A, p(x,a) > 0.
Let §(a) = 3p(z,a). Then {Ss(a)(@) : @ € A} is an open cover of A. Since A is compact
there exist a1, az,...,a, € A such taht A C S5(,,)(a1) U Ssq,)(a2) U+ U S5, (an). Let
6 = min{d(a1),d(az),...,0(an)}. Since Ssu,)(x) N Ss(,)(ai) = 0 for all i = 1,2,...,n it
follows that Ss(x) N Ss(q,)(a;) = 0 for all i = 1,2,...,n and hence S5(x) N A = (). Thus =
is not a limit point of A. So A is closed. |

THEOREM. 2.46 FEvery closed subset of a compact metric space is compact.

PROOF. Let (X, p) be a metric space, A C X be closed. Let {V; : i € I} be a family of
open sets covering A. Let V= X — A. Then V is an open set, so the family {V} U {V; :
i € I} is an open cover of X. By compactness of X this cover has a finite subcover,
say V,Vi,,Vig,...,Vi,. Thus X c VUV, UV, U...UV,; . This implies that A C

VUV, uUV,U...uV;, . Since ANV =0, ACV;,UV;,U...UV;, . Hence A is compact. Bl

DEFINITION. 2.47 A subset A of a metric space (4, p) is said to be a totally bounded set
if for any € > 0 there exist x1, 22, ..., 2, in X such that A C Se(x1)USc(x2)U---USe(xy).

It can be observed that a subset of a totally bounded subset is totally bounded. It can
also be observed that every totally bounded set is bounded, however the converse is not

true. There are sets in metric spaces which are bounded but not totally bounded.
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EXAMPLE. 2.48 Consider any infinite set X with discrete metric d. Let A be an infinite
subset of X. If we take e = % then for any z € X, S¢(z) = {z}. Hence it is impossible to
find a finite number of points x1, xa, ..., x, in A for which A C Sc(z1)USc(z2)U- - -USe(xy,).
Thus A is totally bounded. However d(A) = 1 shows that A is bounded.

THEOREM. 2.49 Let A be a subset of a metric space (X, p). Then A is totally bounded if
and only if for any € > 0 there exist finitely many subsets A1, Ao, ..., Ay of A such that
A=A1UAU---UA, and p(Ag) <€ forallk=1,2,...,n.

PROOF. Let A be totally bounded and € > 0. Then there exists x1,x2,...,Z, € A such
that A C 56/2(.%'1) U SE/Q(xg) U---u 56/2(.%”) Put A, = AN SE/Q(xk) for k=1,2,...,n.
Then p(Ag) <eforall k=1,2,...,nand A=A UAU---UA,.

Convversely, let the condition hold and € > 0. Choose a real number § such that 0 < § < e.
By the condition there exists A, Ag, ..., A, C A such taht p(A4;) < dforalli=1,2,....,n
and A=A UAyU---UA,. Choose x; € X such that A; C Sc(z;) for all i = 1,2,...,n.
Thus A C U{Sc(z;) : i =1,2,...n}, i.e., A is totally bounded. [ |

THEOREM. 2.50 A subset of a metric space is totally bounded if and only if every sequence

in it has a Cauchy subsequence.

PROOF. Let (X, p) be a metric space, A C X. Assume that A is totally bounded. Let
{z,,} be a sequence in A. Choose subsets Aj1, A9, ..., A1, of A such that p(Ay;) <1 for
i=1,2,...,n1 and A= A;; UAj2U...UAj,,. Then there exists i € {1,2,...,n1} such
that Ai; contains z, for infinitely many n. We denote this set by Bj, then B is totally
bounded. Again choose subsets A1, Aga,. .., Aon, of By such that p(Agz) < % for all
i€{1,2,...,n2} and By = Ay U Ao U...U Agy,,. Now one of the sets Aa1, Aoa, ..., Aon,
contains x, for infinitely many n in N. Call this set Bs. Assume that we have found
By, Bs,...,By such taht A D By D -+ D By, p(Bi) < % forall i =1,2,...,k and each B;
contains x,, for infinitely many n. By arguments similar to those used above, we can find
By11 C By, such that p(Bjg41) < k%%l
induction there exist subsets Bi, B, ... of A such that

and By contains z,, for infinitely many n. So, by

1. ADB1D>DByD---.
2. p(By) < 1 for all k € N.

3. Each By contains x,, for infinitely many n.

Now choose a positive integer n; such that x,, € B;. Suppose we have chosen integers
ny < ng < --- < ng such that x,, € B; for ¢+ = 1,2,..., k. Since Bjy; contains infinitely
many x, we can find a positive integer ngy1 > ng such that z,, , € Bry1. So, again by

induction we get a subsequence {z,, } of {z,} such that z,, € By for all k € N.
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Let € > 0. Choose a positive integer m such that % < €. Whenever i,j > m, Tn,;, Tn; € Bp,

since p(Bp) < L, p(2p,, Tp,) < L < €. Therefore, {x,,} is a Cauchy subsequence of {z,}.

Conversely, suppose that every sequence in A has a Cauchy subsequence. If possible,
suppose that A is not totally bounded. Then there exists € > 0 such that for all finitely
many points 1,29, ..., Ty in A, A ¢ Sc(x1) U Sc(z2) U-+-USe(xy,). Choose x1 € A, x5 €
A — Se(x1). Suppose that we have found z1,x9,...,z, € A such taht x; € A — Sc(z1) U
Se(x2) U -+ U Se(x;) for all i = 1,2,...,n. Since A ¢ Sc(x1) U Se(z2) U -+ U Se(x,), we
can find z,41 € A — Se(x1) U Se(x2) U -+ - U Se(zy,). Thus by induction we get a sequence
{z,} in A such that for all i > 2, x; & Sc(z1) U Se(x2)U---USe(x;—1). Let i,5 € N. Then,
if j > i, then x; € Sc(x;) and hence p(x;,2;) > e. This shows that {x,} can not have a

Cauchy subsequence — a contradiction. |

DEFINITION. 2.51 A subset A of a metric space is said to be sequentially compact if each

sequence in A has a convergent subsequence with limit in A.

THEOREM. 2.52 A subset A of a metric space is sequentially compact if and only if every

sequence in A has a cluster point in A.

PROOF. Proof is easy.

DEFINITION. 2.53 Let A be a subset of a metric space (X, p) and A be a family of open
sets of (X, p) covering A. Then 0 > 0 is said to be a Lebesque number of the open cover
A for A if for all B C A, p(B) < ¢ implies that there exists V' € A such that B C V

THEOREM. 2.54 Let A be a sequentially compact subset of a metric space (X, p) and A

be a family of open sets covering A. Then A has a Lebesgue number.

PROOF. If possible suppose that A has no Lebesgue number. Then for each positive integer
n there exists A, C A such that p(4,) < % and A, ¢ G for all G € A. By induction we
can choose a sequence {a,} in A such that a,, € A, for all n € N. Since A is sequentially
compact, {a,} has a cluster point, say [, in A. Since A covers A, there exists G € A such
that | € G. G being open, we can choose € > 0 such that Sa.(I) C G. Also we can choose
n € N such that 1 < € and p(a,,1) < e. Now, let z € A,,. Then p(z,a,) < p(4,) < L <
and hence p(z,1) < p(z,an) + plan,l) < e +€ = 2e. Thus x € Sy(l) which shows that

A, C S2(l) C G — a contradiction. [

PROBLEM. 2.55 Prove that each sequentially compact metric space is totally bounded.

DEFINITION. 2.56 Let A be a subset of a metric space (X, p). Then A is said to have
Bolzano-Weierstrass (BW) property if each infinite subset of A has a limit point in A.
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It is vacuously true that every finite set has the BW property.

THEOREM. 2.57 Let (X, p) be a metric space, A C X. Then the followings are equivalent:

1. A is compact.
2. A has the BW property.

3. A is sequentially compact.

PROOF. 1 = 2: Assume A is a compact set and B be an infinite subset of A. If possible,
suppose that B has no limit point. Then each a € A is not a limit point of B. So, for
all @ € A there exists d(a) > 0 such taht Ss5,)(a) N B C {a}. The family {S5q)(a) :
a € A} is an open cover of A and by compactness of A it has a finite subcover, i.e.,
there exist a1,az,...,a, € A such that A C Ss(4,)(a1) U Sj(ay)(a2) U -+ U Ss(q,)(an). So
B C Sj(ay)(a1) U Ss(a5) (a2) U+ - - U S(a,,) (an), ie.; B C (S5(ay)(a1) N B) U (Ss(az) (a2) N B) U
U (Ss(a)(an) N B) C {a1} U{az} U---U{an} = {a1,a2,...,a,} — a contradiction as
B is an infinite set.

2 = 3: Assume that A has the BW property. Let {z,} be a sequence in A, R be the

range of {z,}, i.e., R = {zy : n € N}. Two cases may arise:

Case 1: R is finite. Then there exists £ € A such that z,, = £ for infinitely many n € N

and in this case £ is a cluster poin of {z,}.

Case 2: R is infinite. Then, since A has the BW property, R has a limit point, say £, in
A. Clearly ¢ is a cluster point of {x,}.

Hence A is sequentially compact.

3 = 1: Assume A is sequentially compact. Let § = {G; : i € I} be an open cover of
A. Since A is sequentially compact, § has a Lebesgue bumber § > 0. Also A is totally
bounded, hence there exist aj, ag, ...,a, € Asuch that A C Ss(a;1)USs (az)U---USs (an).
Note that for all k =1,2,...,n, p(AN S%(ak)) < %‘; <9 auad3 hence tflere exists G; €S
such that AN S% (ar) C Gj,.. Thus,

A = (ANS5(@))U(ANS3(a)) U+ U (AN S5 (an))
- GilUGi2U"-UGin.

Hence A is compact. |

THEOREM. 2.58 A subset of a metric space is compact if and only if it is complete and
totally bounded.

PROOF. Let (X, p) be a metric space, A C X be compact. For any € > 0, {Sc(a) : a € A}

is an open cover of A and hence by compactness of A there exist a1, as,...,a, in A such
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that {Se(a;) : 1 < i < n} covers A. Thus A is totally bounded. Let {a,} be a Cauchy
sequence in A. Since A is compact, it is sequentially compact and hence {a,,} has a cluster
point. Recall that if a cauchy sequence has a cluster point then it is convergent. So {a,}

is convergent and hence A is complete.

Conversely, let A be complete and totally bounded and {a,} be a sequence in A. Since
A is totally bounded {a,} has a Cauchy subsequence, say {an, }, and by completenes of
A, {ap, } is convergent. Thus every sequence in A has a convergent subsequence. So, A is

sequentially compact and hence is compact. |

PROBLEM. 2.59 Prove that every bounded subset of R is totally bounded.

Solution: Let A C R be bounded. then there exists a,b € R, a,b, such that A C [a, b].
Let € > 0 be arbitrary. Let n be the smallest positive integer such taht b_Ta < 5. Choose

d > 0 such that 6 < §. Let for all & = 1,2,...,n, Iy = [a + (k — 1)d,a + kd]. Then

[a,b] C UY_ Ik, ie., A C UR_ I}. Also p(I) = 20 < e. Thus A is totally bounded.

PROBLEM. 2.60 Prove that every bounded subset of R", where n € N, is totally bounded.

Solution: Let A be a bounded subset of R" and € > 0 be a real number. For i =
1,2,...,n let A; = m(A). Then A C A} x Ay x --- x A, and each A; is bounded
subset of R, and hence each A; is totally bounded. So for each i € {1,2,...,n}, there
exists A;1, Aia, ..., Aim, such that A; C Ajg U AjaU---U Ay, and p(Air) < €/y/n for all
ke{l,2,...,m;}.

Now, for all (p1,p2,...,pn) €{1,2,...,m1} x {1,2,...,ma} x --- x {1,2,...,my,}, set
Apipopn = Aipy X Agpy X oo X App,.

Then for any x,y € Ay pypn>

n

plz,y) = | (milz) - m(y)? <

=1

n

S e/vm? =

=1

which implies that p(Ap ps..p,) < €.

Also A C U{Ap po-pn (1,02, .-, o) €{1,2,...,mapx{1,2,...,ma}x---x{1,2,...,mp}.

Since this collection is finite, A is totally bouonded.

As a consequence of the above results we have the following.

THEOREM. 2.61 For n € N, a subset of R" is compact if and only if it is closed and
bounded.
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PROOF. Let A be a closed and bounded subset of R™. Then A is totally bounded. Also
since a subset of R™ is is closed if and only if it is complete, it follows that A is complete.

Thus A is complete and totally bounden, i.e., A is compact.

The converse part is immediate. |

THEOREM. 2.62 (Bolzano-Weierstrass Theorem): For any integer n > 1, every infinite

bounded subset of R"™ has a limit point.

PROOF. Let A be an infinite bounded subset of R™. Then A is also bounded. Since A is
closed, it is compact. So A has the B-W property. A being an infinite subset of A, A has
a limit point (in A). [ |

THEOREM. 2.63 let A be a compact subset of a metric space (X,p) and f: A — R is a

continuous function. Then f is bounded and attains its bounds.

PROOF. As f(A) is a compact subset of R, it is closed and bounded. So f is bounded.
If m = inf f(A), M = sup f(A) then m, M € f(A). So there exists a,b € A such that
fla) =m, f(b) = M. Hence f attains its bounds. [ |

2.4 Contraction Map and Banach’s Contraction Principle

DEFINITION. 2.64 Let (X, p) be a metric space and f : X — X be a function. Then f is

said to be a contraction mapping if there exists r € R,0 < r < 1 such that
p(f(x), f(y) <7 plz,y) Vo,yeX.

It immediately follows that each contraction function satisfies Lipschitz’s condition and

hence it is a uniformly continuous function.

DEFINITION. 2.65 Let X be aset f: X — X be a function. A point a € X is said to be
a fized point of f if f(a) = a.

THEOREM. 2.66 [Banach’s contraction principle] Let f be a contraction mapping on a
complete metric space (X, p). Then f has a unique fized point.

PROOF. Choose z¢p € X arbitrarily. Define inductive a sequence {z,} in X as follows:
x1 = f(xo),x2 = f(x1),...Tny1 = f(xy,) for all n > 2.

Since f is a contraction mapping there exists r € R, 0 < r < 1, such that p(f(x), f(y)) <
r.p(z,y) for all x,y € X. Let k € N. Then
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p(ar,p-1) = p(f(@r_1), f(@r2)) < rp(zr_1,25-2) < r°p(Th_2,21_3)
< o <L rk_l.p(:z:l,xo).

Hence for m,n € N,m > n,

IN

P(Tm, Tn) P(Tms Tm—1) + p(Tm—1, Tm—2) + - + p(Tny1, Tn)

IN

" p(wy, o) + ™ p(wr, wo) + - + 17" p(1, o)

rp(z1, xo) [+ 4 r? 4 ™
1 —ym " N

n
. < —
rp(a1, 20) —— < plas,vo)y—

Since |r| < 1, limy, o0 "™ = 0 and hence limy,, y—00 p(Zm, 2n) = 0. Thus {z,} is a Cauchy
sequence in (X, p). By completeness of (X, p) there exists yg € X such that lim,, . x,, =
yo. Since f is continuous, lim, o f(zn) = f(yo), i.e., limy_so0 nt1 = f(yo) and hence

yo = f(yo). Thus yp is a fixed point of f.

If possible, let there be two fixed points, say yo and yj. Then

o, v0) = p(f(wo), fwo)) < rp(yo,yo)-

This is impossible, since 0 < r < 1, unless yo = y;. Thus f has unique fixed point. |

We conclude this note with an applications of Banach’s Contraction Principle; viz., Pi-

card’s Theorem on existance of unique solution of differential equation.

2.4.1 Picard’s Theorem

THEOREM. 2.67 Let f be a real valued function defined on the rectangle R = [ay, as] X
[b1,b2]. Suppose that f and % are continuous on R and (xo,yo) is an interior point on

R. Then the differential equation % = f(z,y) has a unique solution y = g(x) such that

Yo = g(xo).
PROOF. Note that y = g(z) is a solution of % = f(z,y) for all z in a neighbourhood Ny,
of x( satisfying yo = g(x¢) if and only if

oz) = yo+ / f(t,g(t)) dt Va € Ny.

To complete the proof it is sufficient to show that that there exists a unique g(x) satisfying

the above condition.
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Since f and %zjj are continuous on the compact set [a1,ag] X [b1,be] there exists a real
M > 0 such that

Fey)| <M and \jyf(ac,y)'SM @

for all (z,y) € a1, a2] X [b1,b2]. Let x be an arbitrary but fixed real chosen in [a as] and
Y1,Y2 € [b1,b2]. Then by Lagrange’s Mean Value Theorem there exists 6,0 < 6 < 1, such
that

fam) — fay) = (- y1>§yf<x,yz O — ),

Hence,

|f(z,y1) = f(z,92)] < |y1 — yo| M. (3)

Thus for a fixed x, f satisfies the Lipschitz condition with respect to the variable y.
Choose a positive real « such that Ma < 1 and [zg — «, o+ o] X [yo — Ma, yo + Ma] C
la1, az] x [by,ba].

Note that C([zg — a, zp + «]), the set of all real valued continuous functions defined on
[xo — «, Ty + ], is a real vector space, moreover it is a complete normed linear space with

respect to supnorm.

Define a subset X of C([xg — a, zo + a]) by
geX <= |g—yoll £ Ma,

where yo denotes the constant function defined by yo(z) = yo for all x € [zg — a, o + ],
i.e., X is the closed ball Saralyo] in C([zo — a, o + a]) with centre at y¢ and radius Ma.
So, X is a closed subspace of C'([zo—«, zo+«a]). Since C([zo— o, zo+«]) is complete and
X is a closed subspace of it, X is a complete metric space with respect to metric induced

by the norm of C([zo — «a, xo + a).

Now, for g € X,t € [xg—«, xo+a], since |g(t) —yo| < Ma, it follows that (¢, g(t)) belongs
to [zo — a, xo + o] X [yg — Ma, yo + Ma]. Define a mapping T'(g) : [0 — a, z9 + o] = R
by,
x
T()(z) = w +/ F(t,g(t)) dt, Vit € [z — a, 20 +al.
0

Clearly, T'(g) € C([xo — a, xo + ). Also for all z € [xg — a, 2o + @],

T(9)(x) =yl =

/ftg dt‘ /yftg )| dt < Ma.
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So, sup{|T'(g)(z) — yo| : € [x0 — @, 0 + ]} < Ma and hence ||T(g) — yo|| < Ma. Thus
T(g) € X, i.e., T is a mapping from X to X.

Let g1,92 € X and x € [z9 — a, 29 + «]. Then

T(g1)(x) = T(g2)(2)] =

/ U tan(®) — f(tga(6))] dt
Mgi(t) — g2(8)| - |z — 20| (by 3)

(t) — g2
M|g1(t) — ga(t)|ev.

IN

IN

Thus [|T(g1) — T(g2)|| < Malgr — g2]|.

Since Ma < 1 it follows that T : X — X is a contraction mapping. Since X is a complete
metric space there exists a unique g € X such that T'(g) = g, i.e., T(g)(x) = g(x) for all

x in [xg — «, o + a]. Hence
o@) = wt [ Fltg(®) dt Ve fw -, w0+l
)

This completes the proof. |



