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Syllabus:

Unit-1 : Metric spaces: Definition and examples. Open and closed balls, neighbourhood, open set,

interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable

spaces. Sequences in Metric Spaces, Cauchy sequences. Complete Metric Spaces, Cantor’s theorem.

Unit 2 : Continuous mappings, sequential criterion and other characterizations of continuity, Uni-

form continuity, Connectedness, connected subsets of R. Compactness: Sequential compactness,

Heine-Borel property, Totally bounded spaces, finite intersection property, and continuous func-

tions on compact sets. Homeomorphism, Contraction mappings, Banach Fixed point Theorem and

its application to ordinary differential equation.

1 Metric space and related concepts

Metric space is the generalisation of the Euclidean spaces Rn, where the distance function

plays the crucial role to most of the concepts regarding continuity, convergence etc.

1.1 Basic Definitions, Open Sets and Closed Sets

Definition. 1.1 Let X be a non-empty set and ρ : X ×X → R be a function. ρ is said

to be a metric on X if the following conditions hold:

M1: For all x, y in X, ρ(x, y) ≥ 0 and ρ(x, y) = 0 if and only if x = y.

M2: For all x, y in X, ρ(x, y) = ρ(y, x).

M3: For all x, y, z in X, ρ(x, y) ≤ ρ(x, z) + ρ(z, y) — this rule is known as triangular

inequality.

If ρ is a metric on a set X then the pair (X, ρ) is called a metric space.

Example. 1.2 1. Let R be the set of reals. We define ρ(x, y) = |x− y| ∀x, y ∈ R, then
ρ is a metric on R, called the usual metric on R and hence (R, ρ) is a metric space.

2. Let C be the set of complex numbers. If we define ρ(z1, z2) = |z1 − z2| ∀z1, z2 ∈ C,
then (C, ρ) is a metric space.
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3. Let Rn be the set of all n-tuples of reals. If we define

ρ(x, y) =
√∑

(xi − yi)2, for all x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn,

then ρ is a metric on Rn, called the Euclidean metric on Rn and hence (Rn, ρ) is a

metric space. This metric space is called the n-dimensional Euclidean space.

4. Let B(X) be the set of all real valued bounded functions on a non-empty set set X.

If we define

ρ(f, g) = sup{|f(x)− g(x)| : x ∈ X} for all f, g ∈ B(X),

then ρ is a metric on B(X), called the supnorm metric on B(X) and hence (B(X), ρ)

is a metric space.

5. Let X be any non-empty set. We define ρ : X ×X → R by

ρ(x, y) = 0, if x = y

= 1, if x ̸= y.

Then ρ is a metric on X. Such a metric space (X, ρ) is called a discrete metric space.

Definition. 1.3 Let (X, ρ) be a metric space and a ∈ X. Then the set

{x ∈ X : ρ(a, x) < r},

where r is a positive real number, is called an open ball or open sphere with center at a

and of radius r and is denoted by Sr(a, ρ) or simply by Sr(a) when no confusion about ρ

is likely to arise. The notations Bρ(a, r) or B(a, r) are also used to denote an open ball

with center at a and radius r.

Example. 1.4 1. In R, the open sphere with center at c and radius r is Sr(c) =

B(c, r) = {x ∈ R : |x − c| < r} = (c − r, c + r) which is a bounded open interval

in R. Also any bounded open interval (a, b) can be written as (a, b) = Sr(c) where

r = b−a
2 , the half of the length of the interval, and c = a+b

2 , the mid-point of the

interval. Thus the open spheres in R are exactly the bounded open intervals in R.

a c b

( )

r r

2. In Euclidean plane R2, for any (a, b) ∈ R2 and for any r > 0,

Sr((a, b)) = {(x, y) ∈ R2 : ∥(x, y)− (a, b)∥ < r}

= {(x, y) ∈ R2 :
√

(x− a)2 + (y − b)2 < r}

= {(x, y) ∈ R2 : (x− a)2 + (y − b)2 < r2}
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which is nothing but the the set of points lying inside the circle whose centre is at

(a, b) and radius is r.

3. For a non-empty set X consider the metric space B(X). For f ∈ B(X) and r > 0,

Sr(f) = {g ∈ B(X) : sup{|f(x)− g(x)| : x ∈ X} < r}

= {g ∈ B(X) : |f(x)− g(x)| < r ∀x ∈ X}

= {g ∈ B(X) : f(x)− r < g(x) < f(x) + r ∀x ∈ X}.

Thus, Sr(f) is the set of all those members g of B(X) whose graph lies between those

of f − r and f + r.

4. Let X be a non-empty set equipped with discrete metric ρ. It is easy to verify that

for a ∈ X and r > 0, Sr(a) = {a} if r ≤ 1 and Sr(a) = X if r > 1.

O

y

x

(a, b)

r

(a) Open ball in R2 with
center at (a, b) and radius r

O

y

x

a b

f

f + r

f − r

r

r

g

(b) Open ball in B([a, b]) with

center at f and radius r

In the above, figure (a) is the open ball in R2 which is actually an open circular disk with

center at (a, b) and radius r. The figure (b) is in the metric space B([a, b]) of the set of all

bounded functions defined in the closed interval [a, b] with supnorm metric, the open ball

Sr(f), centered at f and radius r. It considts of all the bounded functions g : [a, b] → R
such that f(x)− r < g(x) < f(x) + r, for all x ∈ [a, b].

Theorem. 1.5 Let (X, ρ) be a metric space. Let Sr1(a), Sr2(b) be two open spheres in

(X, ρ). Then

1. For each x in Sr1(a) there exists δ1 > 0 such that Sδ1(x) ⊂ Sr1(a).

2. For each x in Sr1(a) ∩ Sr2(b) there exists δ2 > 0 such that Sδ2(x) ⊂ Sr1(a) ∩ Sr2(b).
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Proof. 1. If x ∈ Sr1(a) then ρ(a, x) < r1. Let δ1 = r1−ρ(a, x), then δ1 > 0. If y ∈ Sδ1(x)

then ρ(x, y) < δ1 and hence ρ(a, y) ≤ ρ(a, x) + ρ(x, y) < ρ(a, x) + δ1 = r1. So, y ∈ Sr1(a).

Thus Sδ1(x) ⊂ Sr1(a).

2. Let x ∈ Sr1(a)∩ Sr2(b). Then ρ(a, x) < r1

and ρ(b, x) < r2. Choose

δ2 = min{r1 − ρ(a, x), r2 − ρ(b, x)}.

Clearly δ2 > 0. If y ∈ Sδ2(x) then

ρ(x, y) < δ2, so

ρ(a, y) ≤ ρ(a, x) + ρ(x, y)

< ρ(a, x) + δ2

< ρ(a, x) + (r1 − ρ(a, x))

= r1.

a

Sr1(a)

b

Sr2(b)

x

r1 − ρ(a, x)

r2 − ρ(b, x)

Hence y ∈ Sr1(a), i.e., Sδ2(x) ⊂ Sr1(a). Similarly we can show that Sδ2(x) ⊂ Sr2(b). Thus

Sδ2(x) ⊂ Sr1(a) ∩ Sr2(b). ■

Definition. 1.6 Let (X, ρ) be a metric space, A ⊂ X and x ∈ X. Then a is said to be

an interior point of A if there exists r > 0 such that Sr(a) ⊂ A.

A set N ⊂ X is said to be a neighbourhood of a point x if x is an interior point of N .

Theorem. 1.7 Let (X, ρ) be a metric space, for x ∈ X we denote by N(x, ρ) or simply by

Nx the set of all neighbourhoods of x. Then For all x ∈ X,

1. Nx ̸= ∅ and x ∈ N for each N ∈ Nx.

2. For all A,B ⊂ X, A ⊃ B and B ∈ Nx implies that A ∈ Nx.

3. For all A,B ⊂ X, A,B ∈ Nx implies that A ∩B ∈ Nx.

4. If A ∈ Nx then there exists B ∈ Nx such that B ⊂ A and B ∈ Ny for all y ∈ B.

5. If A ∈ Nx then there exists B ∈ Nx such that A ∈ Ny for all y ∈ B.

Proof. 1. For any x ∈ X, r > 0, Sr(x) ⊂ X and hence X ∈ Nx. So Nx ̸= ∅. Also of

N ∈ Nx then there exists r > 0 such that Sr(x) ⊂ N and hence x ∈ N .

2. If B ∈ Nx then there exists r > 0 such that Sr(x) ⊂ B. Since B ⊂ A, Sr(x) ⊂ A, hence

A ∈ Nx.

3. A,B ∈ Nx implies that there exist r1, r2 > 0 such that Sr1(x) ⊂ A and Sr2(x) ⊂ B.

Let r = min{r1, r2}. Then Sr(x) ⊂ A ∩B and hence A ∩B ∈ Nx.
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4. Let A ⊂ Nx, then there exists r > 0 such that Sr(x) ⊂ A. Put B = Sr(x). So B ∈ Nx

and B ⊂ A. If y ∈ B we can find r1 > 0 such that Sr1(y) ⊂ B (we take r1 = r − ρ(x, y)).

Thus B ∈ N(y).

5. Follows from 2 and 4. ■

Definition. 1.8 Let (X, ρ) be a metric space, a set V ⊂ X is said to be an open set if it

is a neighbourhood of each of its points.

Every open sphere in a metric space is open set (Theorem 1.5(1))

Theorem. 1.9 Let (X, ρ) be a metric space and Tρ denote the set of all open sets of

(X, ρ). Then

1. ∅, X ∈ Tρ.

2. If V1, V2 ∈ Tρ then V1 ∩ V2 ∈ Tρ.

3. If {Vi : i ∈ I} ⊂ Tρ then ∪{Vi : i ∈ I} ∈ Tρ.

Proof. 1. Clearly X is a neighbourhood of each of its points. Also it is vacuously true

that the empty set is a neighbourhood of each of its points. Thus X, ∅ ∈ Tρ.

2. Let a ∈ V1 ∩ V2, i.e. a ∈ V1 and a ∈ V2. Then V1 ∈ Na and V2 ∈ Na and hence by

Theorem 1.7, V1 ∩ V2 ∈ Na. Since a has been chosen arbitrarily in V1 ∩ V2, it follows that

V1 ∩ V2 is a neighbourhood of each of its points. Thus V1 ∩ V2 ∈ Tρ.

3. Let {Vi : i ∈ I} be a subfamily of Tρ and a ∈ ∪{Vi : i ∈ I}. Then there exists i0 ∈ I

such that a ∈ Vi0 . Since Vi0 ∈ Tρ and a ∈ Vi0 it follows that Vi0 ∈ Na. Again since

Vi0 ⊂ ∪{Vi : i ∈ I} it follows that ∪{Vi : i ∈ I} ∈ Na. Hence ∪{Vi : i ∈ I} ∈ Tρ. ■

Remark. 1.10 Intersection of an arbitrary collection of open sets need not be open.

Example. 1.11 For all n ∈ N let In denote the open interval (− 1
n ,

1
n). Then each In is

an open sphere (see Example 1.4 (1)) and hence is an open set in R. Note that ∩{In : n ∈
N} = {0}, which is not an open set. Thus even a countable intersection of open sets may

not be an open set.

Definition. 1.12 Let (X, ρ) be a metric space, A ⊂ X. The set of all the interior points

of A is said to be the interior of A and is denoted by A◦.

Theorem. 1.13 Let (X, ρ) be a metric space, A ⊂ X, x ∈ A. Then
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1. x ∈ A◦ if and only if there exists an open set V ⊂ X such that x ∈ V ⊂ A.

2. A is open set if and only if A = A◦.

Proof. Follows from definition. ■

Theorem. 1.14 Let (X, ρ) be a metric space. Then

1. X◦ = X.

2. For A ⊂ X, A◦ ⊂ A.

3. If A ⊂ B ⊂ X then A◦ ⊂ B◦.

4. If V is an open subset of X and A ⊂ X such that V ⊂ A then V ⊂ A◦.

5. For A ⊂ X, (A◦)◦ = A◦.

6. For A,B ⊂ X, (A ∩B)◦ = A◦ ∩B◦.

Proof. 1. Follows from the fact that X is open set.

2. Follows from definition of A◦.

3. If x ∈ A◦ then there exists r > 0 such that Sr(x) ⊂ A. Since A ⊂ B it follows that

Sr(x) ⊂ B and hence x ∈ B◦.

4. Follows from definition of interior point.

5. From above it immediately follows that (A◦)◦ ⊂ A◦. Also, if x ∈ A◦ then there exists

r > 0 such that Sr(x) ⊂ A. Since for any y ∈ Sr(x), A ∈ Ny, it follows that Sr(x) ⊂ A◦

and hence x ∈ (A◦)◦. Thus A◦ ⊂ (A◦)◦.

6. Since A∩B ⊂ A, (A∩B)◦ ⊂ A◦. Similarly (A∩B)◦ ⊂ B◦. Thus (A∩B)◦ ⊂ A◦ ∩B◦.

Also, if x ∈ A◦ ∩ B◦ then there exist r1, r2 > 0 such that Sr1(x) ⊂ A and Sr2(x) ⊂ B.

Taking r = min{r1, r2} we have Sr(x) ⊂ A ∩B and hence x ∈ (A ∩B)◦. Thus A◦ ∩B◦ ⊂
(A ∩B)◦. ■

Theorem. 1.15 For A ⊂ X, where (X, ρ) is a metric space,

A◦ = ∪{V ⊂ X : V is open, V ⊂ A}.

Proof. Let x ∈ A◦. Then there exists r > 0 such that Sr(x) ⊂ A. Let V = Sr(x), then

V is open set and hence x ∈ ∪{V ⊂ X : V is open, V ⊂ A}, i.e.,

A◦ ⊂ ∪{V ⊂ X : V is open, V ⊂ A}.
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Also, let x ∈ ∪{V ⊂ X : V is open , V ⊂ A}. Then there exists open set V ⊂ X such that

x ∈ V and V ⊂ A. Since V is open V ⊂ A◦ and hence x ∈ A◦, i.e.,

A◦ ⊃ ∪{V ⊂ X : V is open, A ⊃ V }.

Thus A◦ = ∪{V ⊂ X : V is open, A ⊃ V }. ■

Remark. 1.16 From the above result one can conclude that A◦ is the largest (with respect

to set inclusion) open set contained in A.

Definition. 1.17 Let (X, ρ) be a metric space, A ⊂ X and a ∈ X. Then a is said to be

a limit point of A if for all N ∈ Na, (N − {a}) ∩ A ̸= ∅. The set of all the limit points of

A is called the derived set of A and is denoted by A′.

Theorem. 1.18 Let A be a subset of a metric space (X, ρ), a ∈ A. Then the following

statements are equivalent:

1. a ∈ A′.

2. For all r > 0, (Sr(a)− {a}) ∩A ̸= ∅.

3. Each neighbourhood of a contains infinitely many elements of A.

Proof. (1) ⇒ (2): Follows immediately since for any r > 0, Sr(a) is a neighbourhood of

a.

(2) ⇒ (3): Assume (2) holds. If possible, suppose that there exists N ∈ Na which contains

only finitely many distinct points of A, say x1, x2, . . . , xn. If any one of these points is a

we exclude it. Let ri = ρ(xi, a), 1 ≤ i ≤ n. The for each i, ri > 0. Also since N ∈ Na

there exists r′ > 0 such that Sr′(a) ⊂ N . Put r = min{r′, r1, r2, . . . , rn}. Then r > 0 and

Sr(a) contains no point of A — a contradiction to (2).

(3) ⇒ (1): Follows from definition of limit point. ■

Definition. 1.19 Let (X, ρ) be a metric space and A ⊂ X. A is said to be a closed set

if it contains all of its limit points, i.e., if A′ ⊂ A.

Theorem. 1.20 Let (X, ρ) be a metric space and F ⊂ X. Then F is a closed set if and

only if its complement F c in X is an open set.

Proof. Assume that F is a closed set. Let x ∈ F c, then x ̸∈ F . Since F is a closed

set, x is not a limit point of F ; hence there exists r > 0 such that Sr(x) ∩ F ̸= ∅. Thus

Sr(x) ⊂ F c which shows that x is an interior point of F c, i.e., F c ∈ Nx. Since x has been
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chosen arbitrarily in F c, it follows that F c is a neighbourhood of each of its points. Hence

F c is an open set.

Conversely, suppose that F c is an open set. Let x ̸∈ F , then x ∈ F c. Since F c is open

F c ∈ Nx. Also F ∩ (F c) = ∅, which shows that x ̸∈ F ′. Thus x ̸∈ F implies that x ̸∈ F ′,

hence F ′ ⊂ F , i.e., F is closed. ■

Theorem. 1.21 Let (X, ρ) be a metric space. If Fρ denotes the set of all closed sets, then

1. X, ∅ ∈ Fρ.

2. If F1, F2 ∈ Fρ then F1 ∪ F2 ∈ Fρ.

3. If {Fi : i ∈ I} ⊂ Fρ then ∩{Fi : i ∈ I} ∈ Fρ.

Proof. 1. Since ∅, X ∈ Tρ it follows that X, ∅ ∈ Fρ.

2. If F1, F2 ∈ Fρ then X − F1, X − F2 ∈ Tρ which implies that (X − F1)∩ (X − F2) ∈ Tρ,

i.e., X − (F1 ∪ F2) ∈ Tρ. Hence F1 ∪ F2 ∈ Fρ.

3. If Fi ∈ Fρ for all i ∈ I then X − Fi ∈ Tρ for all i ∈ I. Hence ∪{X − Fi : i ∈ I} ∈ Tρ,

i.e., (X − ∩{Fi : i ∈ I}) ∈ Tρ. Thus ∩{Fi : i ∈ I} ∈ Fρ. ■

Definition. 1.22 Let A be a subset of a metric space (X, ρ). Then the set A ∪ A′ is

called the closure of A in X and is denoted by Ā or by cl(A).

Theorem. 1.23 A subset A of a metric space (X, ρ) is closed if and only if A = Ā.

Proof. Assume A is a closed set. Then A′ ⊂ A and hence Ā = A∪A′ = A. On the other

hand, Ā = A ⇒ A ∪A′ = A ⇒ A′ ⊂ A. Hence A is a closed set. ■

Theorem. 1.24 Let (X, ρ) be a metric space. Then

1. ∅̄ = ∅.

2. For all A ⊂ X, A ⊂ Ā.

3. If A ⊂ B ⊂ X then Ā ⊂ B̄.

4. For A,B ⊂ X, A ∪B = Ā ∪ B̄.

5. For all A ⊂ X, Ā = Ā.

Proof. 1. Immediate, since ∅′ = ∅.

2. Follows from the definition of closure.
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3. A ⊂ B ⇒ A′ ⊂ B′ and hence the result follows.

4. Since A ⊂ A∪B, by (3) above, Ā ⊂ A ∪B. Similarly B̄ ⊂ A ∪B, hence Ā∪B̄ ⊂ A ∪B.

Also if x ∈ X such that x ̸∈ Ā ∪ B̄ then there exist r1, r2 > 0 such that Sr1(x) ∩ A = ∅
and Sr2(x) ∩ B = ∅. Let r = min{r1, r2}. Then (Sr(x) ∩ A) ∪ (Sr(x) ∩ B) = ∅, i.e.,
Sr(x) ∩ (A ∪B) = ∅. So, x ̸∈ A ∪B and hence A ∪B ⊂ Ā ∪ B̄.

Thus Ā ∪ B̄ = A ∪B.

5. It follows from (2) above that Ā ⊂ ¯̄A. Note that ¯̄A = A ∪A′ = Ā∪Ā′ = Ā∪(A′∪(A′)′) =

A ∪A′ ∪ (A′)′ = Ā ∪ (A′)′. So to prove the reverse inequality, it is sufficient to show that

(A′)′ ⊂ Ā. Let x ∈ (A′)′. Then for any r > 0, Sr(x) ∩ A′ ̸= ∅. Choose y ∈ Sr(x) ∩ A′.

Then by Theorem 1.5 (1) there exists δ > 0 such that Sδ(y) ⊂ Sr(x). Sδ(y) being a

neighbourhood of y, since y ∈ A′, Sδ(y) contains infinitely many elements of A (Theorem

1.18) and hence Sr(x) contains infinitely many elements of A. Thus x ∈ A′, i.e., (A′)′ ⊂ A′.

This completes the proof. ■

Theorem. 1.25 Let A ⊂ X, where (X, ρ) is a metric space. Then

Ā = ∩{F ⊂ X : F is closed set, A ⊂ F}.

Proof. Let x ̸∈ Ā. Then there exists r > 0 such that Sr(x)∩A = ∅, i.e., A ⊂ X−Sr(x).

Put F = X−Sr(x), then F is a closed set containing A such that x ̸∈ F . Thus x ̸∈ ∩{F ⊂
X : F is closed set, A ⊂ F}. Hence

Ā ⊃ ∩{F ⊂ X : F is closed set, A ⊂ F}

Conversely, let x ̸∈ ∩{F ⊂ X : F is closed set, F ⊃ A}. Then there exists a closed set

F ⊂ X such that F ⊃ A and x ̸∈ F . Then x ∈ X − F . Since X − F is an open set it a

neighbourhood of x, also (X − F ) ∩A = ∅. Thus x ̸∈ Ā. Hence

Ā ⊂ ∩{F ⊂ X : F is closed set, A ⊂ F}.

Hence the result. ■

Remark. 1.26 From the above result one can conclude that Ā is the smallest (with

respect to set inclusion) closed set containing the A.

1.1.1 Exercise

1. Show that interior of a finite set of Rn is empty set.

2. Show that the closure of a finite set is itself.
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3. Let (X, ρ) be a metric space. Define d : X × X → R by d(x, y) = ρ(x,y)
1+ρ(x,y) for all

x, y ∈ X. Show that d is a metric on X. Show that a set V is open in (X, ρ) if and

only if it is open in (X, d).

1.1.2 Subspaces of a metric space

A subset A ⊂ X, where (X, ρ) is a metric space, can be treated as a metric space whose

metric is induced from the metric ρ of X.

Definition. 1.27 Let (X, ρ) be a metric space, A ⊂ X be a non-empty subset. Then

ρA : A×A → R+ defined by ρA(a, b) = ρ(a, b) for all a, b ∈ A, is a metric on A, called the

induced metric on A. The metric space (A, ρA) is called a metric subspace of the metric

space (X, ρ).

Example. 1.28 1. Q with usual metric is a subspace of R with the usual metric.

2. The real line can be identified with the subset R × {0} = {(x, 0) : x ∈ R} of R2.

The usual metric on R2 is the Euclidean metric d. The induced metric on R × {0}
is d((x, y), (y, 0)) =

√
(x− y)2 + (0− 0)2 = |x − y| which is the usual metric on R.

Thus R is a subspace of R2.

Theorem. 1.29 Let (X, ρ) be a metric space, (Y, ρY ) be a subspace of it. Then

1. For y ∈ Y , and r > 0, BρY (y, r) = Bρ(y, r) ∩ Y .

2. A subset V ⊂ Y is open in the subspace (Y, ρY ) if and only if there is an open set

W in the metric space (X, ρ) such that V = W ∩ Y .

Proof. 1. x ∈ BρY (y, r) ⇐⇒ x ∈ Y and ρY (x, y) < r ⇐⇒ x ∈ Y and ρ(x, y) < r ⇐⇒
x ∈ Y and x ∈ Bρ(y, r) ⇐⇒ x ∈ Bρ(y, r) ∩ Y . Hence BρY (y, r) = Bρ(y, r) ∩ Y .

2. Assume V ⊂ Y is open in (Y, ρY ). Choose x ∈ V . Then x is an interior point of V , so

there exists rx > 0 such that BρY (x, rx) ⊂ V . Hence

V = ∪{BρY (x, rx) : x ∈ V } = ∪{Bρ(x, rx) ∩ V : x ∈ V }

= V ∩ (∪{Bρ(x, rx) : x ∈ V }) (by distributive law).

Putting W = ∪{Bρ(x, rx) : x ∈ V }, we have W is an open set in (X, ρ) and V = Y ∩W .

Conversely, assume that V = W ∩ Y for some open set W in (X, ρ). To check that V is

an open set in (Y, ρY ) take x ∈ V . Then x ∈ W and hence x is an interior point of W . So

there exists r > 0 such that Bρ(x, r) ⊂ W . Hence Bρ(x, r) ∩ Y ⊂ W ∩ Y which implies

that BρY (x, r) ⊂ V . Hence x is an interior point of V with respect to ρY . Since x has

been chosen arbitrarily, V is open in (Y, ρY ). ■
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Remark. 1.30 A set open in a subspace need not be open in the original metric space.

For example Q is a subspace of R. Though as a subset of R, Q is not an open set but as a

space Q is open. Similarly, consider the subspace [a, b] of R and consider the open interval

(c, d) where a < c < b < d. Then (c, d) is an open set in R and hence (c, d) ∩ [a, b] = (c, b]

is open in the subspace [a, b]. But (c, b] is never an open set in R.

Theorem. 1.31 Let (Y, ρY ) be a metric subspace of the metric space (X, ρ). Then a set

F ⊂ Y is closed in the subspace Y if and only if there exists a closed set C ⊂ X such that

F = C ∩ Y .

Proof. If F = C ∩ Y for some closed set C ⊂ Y then F is closed in (T, ρY ).

Conversely, assume that F is a closed set in (Y, ρY ). Let C = clX(F ). Then C is a closed

subset of X. Since F ⊂ C and F ⊂ Y it follows that F ⊂ C ∩ Y . Conversely, choose

x ∈ C ∩ Y . Then x ∈ F ∪ F ′ where F ′ denotes the derived set of F in (X, ρ). If x ∈ F ′

then for any ϵ > 0, (Bϵ(X, ρ) − {x}) ∩ F ̸= ∅ and hence (Bϵ(X, ρ) ∩ Y − {x}) ∩ F ̸= ∅
(since x ∈ Y ). This implies that (Bϵ(X, ρY )− {x}) ∩ F ̸= ∅. Thus x is a limit point of F

in (Y, ρY ). Since F is closed in (Y, ρY ) it follows that x ∈ F . Thus C ∩ Y ⊂ F . Hence

F = C ∩ Y , where C is a closed set in (X, ρ). ■

The following result immediately follows from the above result.

Corollary. 1.32 For a subset F ⊂ Y , clY (F ) = clX(F ) ∩ Y .

Definition. 1.33 Let (X, ρ) be a metric space, a set Y ⊂ X is called a dense subset of

X if cl(Y ) = X. In this case the subspace (Y, ρY ) is called a dense subspace.

Definition. 1.34 A metric space (X, ρ) is called a separable space if it has a countable

dense subset.

Example. 1.35 R with its usual metric is a separable space as Q is a dense subset of R.

Example. 1.36 1. For every n ∈ N the metric space Rn with Euclidean metric ρ is a

separable space, Qn is a dense subspace of Rn.

2. In the metric space C([0, 1]) of the real valued continuous functions defined on the

closed interval [0, 1], the set of all polynomial functions on [0, 1] is a dense subset.

1.2 Sequences, their convergence and Completeness of Metric spaces

Definition. 1.37 A sequence in a set X is a function f : N → X. If f(n) = xn for all n

in N, then one usually denote this sequence by {xn}.
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Definition. 1.38 Let {xn} be a sequence in a metric space (X, ρ), x0 ∈ X. Then x0 is

said to be a cluster point of {xn} if for all ϵ > 0, for all n ∈ N there exists m ∈ N such

that m ≥ n and xm ∈ Sϵ(x0).

The sequence {xn} is said to converge to x0 (or to be convergent with limit x0) if for all

ϵ > 0 there exists n0 ∈ N such that xn ∈ Sϵ(x0) for all n ≥ n0. In this case x0 is said to

be the limit of the sequence {xn} and is written as lim
n→∞

xn = x0 or limxn = x0 or simply

as xn → x0.

It follows from the definition that if a sequence {xn} is convergent with x0 as its limit

then x0 is also a cluster point of it. However a sequence having a cluster point need not

be convergent.

Example. 1.39 In R the sequence {xn}, defined by xn = (−1)n, n ∈ N, has two cluster

points 1 and −1, ut it is not convergent.

Theorem. 1.40 The limit of a sequence is unique.

Proof. If possible let {xn} be a convergent sequence having two limits, say l and m,

l ̸= m. Choose ϵ = 1
2ρ(l,m). Then there exist N1, N2 ∈ N such that xn ∈ Sϵ(l) for all

n ≥ N1 and xn ∈ Sϵ(m) for all n ≥ N2. Now, if n > max{N1, N2} then xn ∈ Sϵ(l)∩Sϵ(m).

This is a contradiction since Sϵ(l) ∩ Sϵ(m) = ∅. ■

The next theorem follows immediately from definition of convergence.

Theorem. 1.41 Let (X, ρ) be a metric space, {xn} be a sequence in X and l ∈ X. Then

the following statements are equivalent:

1. {xn} converges to l.

2. For every neighbourhood Nl of l there exists N ∈ N such that for all n ≥ N,n ∈ N,
xn ∈ Nl.

3. For every open set V ⊂ X containing l there exists N ∈ N such that for all n ≥
N,n ∈ N, xn ∈ V .

Proof. 1 ⇒ 2 : Assume 1 holds and Nl is a neighbourhood of l. Then there exists ϵ > 0

such that Sϵ(l) ⊂ Nl. Since xn → l, there exists N ∈ N such that for all n ≥ N , n ∈ N,
xn ∈ Sϵ(l). Hence for all n ≥ N , n ∈ N, xn ∈ Nl.

2 ⇒ 3 : Assume 2 holds. Then 3 holds immediately since any open set is a neighbourhood

of each of its points.

3 ⇒ 1 : Assume 3 holds. Then 1 holds immediately since each open ball is an open set. ■



Department of Mathematics, P R Thakur Govt College 13

Remark. 1.42 In view of the above theorem we observe that if we know the only the

neighbourhood system or only the open sets of the metric space (X, ρ) we can check

whether a sequence in it is convergent or not. This helps us to define convergence of a

sequence in terms of open sets or in terms of neighbourhood system.

Problem. 1.43 1. Let {xn} be a sequence in a metric space (X, ρ) and a ∈ X. Prove

that {xn} converges to a if and only if the sequence {dn} of real numbers converges

to 0, where dn = ρ(xn, a), n ∈ N.

2. Let {xn} be a sequence in R2 defined by xn = ( n
2n+1 ,

2n2

n2+1
), n ∈ N. Show that the

sequence {xn} converges to (12 , 2).

3. Let {fn} be a sequence in B[1, 2] where for all n ∈ N, fn : [1, 2] → R is defined by

fn(x) = (1 + xn)1/n. Let f(x) = x, ∀x ∈ [1, 2]. Show that lim
n→∞

fn = f .

Solution: Problem 1 and 2 left as an exercise.

3. Note that for all n ∈ N, for all x ∈ [1, 2],

|fn(x)| = |(1 + xn)
1
n | =

∣∣∣∣∣x
(
1 +

1

xn

) 1
n

∣∣∣∣∣ ≤ 2 · 2
1
n ≤ 4.

Thus fn ∈ B[1, 2] for all n ∈ N. Also it is clear that f ∈ B[1, 2]. Also for all n ∈ N, for all
x ∈ [1, 2],

|fn(x)− f(x)| = |(1 + xn)
1
n − x| = |x| |(1 + 1

xn
)
1
n − 1| ≤ 2|2

1
n − 1|.

So, sup
x∈[1,2]

|fn(x)− f(x)| ≤ 2|2
1
n − 1| ∀n ∈ N, i.e., ρ(fn, f) ≤ 2|2

1
n − 1| for all n ∈ N.

Hence limn→∞ ρ(fn, f) = 0, i.e., limn→∞ fn = f

Theorem. 1.44 Let A be a subset of (X, ρ), a ∈ X. Then

1. a ∈ A′ if and only if there exists a sequence {xn} of distinct elements of A which

converges to a.

2. a ∈ Ā if and only if there exists a sequence {xn} in A which converges to a.

Proof. 1. Assume that there exists a sequence of distinct elements of A converging to A.

Then for any ϵ > 0 there exists N ∈ N such that xn ∈ Sϵ(a) for all n > N . Hence for any

ϵ > 0, Sϵ(a) contains infinitely many elements of A. Thus a ∈ A′

Conversely, let a belong to A′. Then for any ϵ > 0, Sϵ(a) contains infinitely many elements

of A. Taking ϵ = 1, 12 ,
1
3 , . . . we can find inductively x1 ∈ S1(a), x2 ∈ S 1

2
(a)−{x1}, . . . , xn ∈
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S 1
n
(a) − {x1, x2, . . . xn−1}, . . .. Thus we get a sequence {xn} in A such that xm ̸= xn

whenever m ̸= n and ρ(xn, a) <
1
n . Consequently {xn} converges to 0.

2. Let a ∈ Ā. Then for all n ∈ N choose xn ∈ S 1
n
(a)∩A. Thus we have chosen a sequence

{xn} in A such that ρ(a, xn) < 1
n , for all n ∈ N. Let ϵ > 0. Choose N ∈ N such that

1
N < ϵ. So, for all n ≥ N, ρ(a, xn) < 1

n < 1
N < ϵ, i.e., xn ∈ Sϵ(a) ∀n ≥ N . Hence xn → a.

Conversely, let there exist a sequence in A converging to a. Then for any ϵ > 0 there

exists N ∈ N such that xn ∈ Sϵ(a) for all n > N . Hence for any ϵ > 0, Sϵ(a) ∩ A ̸= ∅.
Thus a ∈ Ā ■

Definition. 1.45 A sequence {xn} in a metric space (X, ρ) is said to be a Cauchy se-

quence if for ϵ > 0 there exists a positive integer N such that ρ(xm, xn) < ϵ for all

m,n > N .

Theorem. 1.46 Every convergent sequence in a metric space is Cauchy sequence.

Proof. Let {xn} be a convergent sequence with limit l in a metric space (X, ρ). Let ϵ > 0.

Then there exists N ∈ N such that for all n ≥ N , ρ(xn, l) <
ϵ
2 . Thus, whenever m,n ≥ N ,

ρ(xm, xn) ≤ ρ(xm, l) + ρ(l, xn) < ϵ/2 + ϵ/2 = ϵ. Hence {xn} is a Cauchy sequence.

Remark. 1.47 The converse of the above theorem is not true, i.e., there are metric spaces

having non-convergent Cauchy sequences.

Example. 1.48 1. Consider the set X = R − Q, of irrational numbers with usual

metric on it. Let xn = 1 +
√
2
n , ∀n ∈ N. Then {xn} is a Cauchy sequence in X but

having no limit in X.

2. Let for a, b ∈ R, P ([a, b]) denote the metric space of all the polynomials defined on

[a, b] with supnorm metric. Define pn(x) = (1 + x
n)

n, x ∈ [a, b], n ∈ N. Then it can

be verified that the sequence {pn} is a Cauchy sequence in P ([a, b]) and lim pn does

not exist in P ([a, b]). (In fact lim pn(x) = ex, x ∈ [a, b] and ex ̸∈ P ([a, b])).

Definition. 1.49 A metric space (X, ρ) is said to be complete if each Cauchy sequence

in X converges to a point of X.

A metric space which is not complete is called an incomplete metric space.

Example. 1.50 The set of real numbers, the set of complex numbers with usual metric

are examples of complete metric spaces, whereas the set of rational numbers with usual

metric is an example of incomplete metric space.

Theorem. 1.51 Let (X, ρ) be a complete metric space and A ⊂ X. Then (A, ρA) is a

complete metric space if and only if A is closed in (X, ρ).
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Proof. Suppose (A, ρA) is complete, ξ ∈ Ā. Then there exists a sequence {xn} in A such

that limxn = ξ. Clearly {xn} is a Cauchy sequence in A. By completeness of (A, ρA)

there exists a in A such that limxn = a. Hence ξ = a, i.e., ξ ∈ A. So Ā ⊂ A, i.e., A is

closed.

Conversely, let A be a closed subset of (X, ρ), {xn} be a Cauchy sequence in (A, ρA). Then

{xn} is a Cauchy sequence in (X, ρ). Since (X, ρ) is complete there exists x0 ∈ X such

that limxn = x0. As xn ∈ A for all n in N, x0 ∈ Ā. Since A is closed Ā = A and hence

x0 ∈ A. Thus the Cauchy sequence {xn} in (A, ρA) converges to a point of A. Hence

(A, ρA) is complete. ■

Definition. 1.52 Let A be a non-empty subset of a metric space (X, ρ). Then A is

said to have a finite diameter if {ρ(x, y) : x, y ∈ A} is bounded. Otherwise A is said to

have infinite diameter. If A has finite diameter, then sup{ρ(x, y) : x, y ∈ A} is called the

diameter of A and is denoted by ρ(A). By definition we shall assume that ρ(∅) = −∞.

Problem. 1.53 Show that for any A ⊂ X, where (X, ρ) is a metric space, ρ(A) = ρ(Ā).

Solution: As A ⊂ Ā, it immediately follows that ρ(A) ≤ ρ(Ā).

If possible let ρ(A) ≨ ρ(Ā). Choose ϵ > 0 such that ρ(A) + ϵ < ρ(Ā). Then one can

choose x, y ∈ Ā such that ρ(A) + ϵ < ρ(x, y). Now, one can choose a, b ∈ A such that

ρ(a, x) < ϵ/2 and ρ(b, y) < ϵ/2. Also ρ(a, b) ≤ ρ(A). Hence,

ρ(x, y) ≥ ρ(A) + ϵ > ρ(a, b) + ϵ/2 + ϵ/2 > ρ(a, b) + ρ(b, y) + ρ(a, x)

≥ ρ(x, y) — a contradiction.

Thus ρ(A) ̸< ρ(Ā), i.e., ρ(A) ≥ ρ(Ā).

Problem. 1.54 If {xn} is a sequence in a metric space (X, ρ) and p ∈ X such that

S 1
n
(p) ∩ S 1

n
(xn) ̸= ∅ for all n ∈ N, prove that limxn = p.

Theorem. 1.55 If a Cauchy sequence has a cluster point then the sequence converges to

it.

Proof. Let {xn} be a Cauchy sequence having a cluster point p. Let ϵ > 0 be given.

Then there exists k ∈ N such that ρ(xm, xn) < ϵ/2 for all m,n > k. Since p is a cluster

point, there exists s > k such that ρ(xs, p) < ϵ/2. Thus, for all n > k, ρ(xn, k) ≤
ρ(xn, xs) + ρ(xs, p) < ϵ/2 + ϵ/2 = ϵ. Thus limxn = p. ■

Remark. 1.56 A Cauchy sequence can have at most one cluster point.
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Theorem. 1.57 [Cantor Intersection Property] Let (X, ρ) be a metric space. Then the

followings are equivalent:

1. (X, ρ) is complete.

2. If {Fn} is a sequence of non-empty closed sets in (X, ρ) such that F1 ⊃ F2 ⊃ F3 ⊃ · · ·
and ρ(Fn) → 0 as n → ∞, then ∩∞

n=1Fn constitutes of exactly one point.

Proof. 1. ⇒ 2.: Suppose that (X, ρ) is complete.

If possible, let F1 ∩F2 ∩F3 ∩ · · · contains two distinct points, say, x and y. Then ρ(Fn) ≥
ρ(x, y) for all n ∈ N, which shows that lim ρ(Fn) ≥ ρ(x, y) > 0 – a contradiction. Thus

the intersection F1 ∩ F2 ∩ F3 · · · can contain at most one point.

For each n ∈ N choose xn ∈ Fn. (Such a choice is possible by axiom of choice). Let ϵ > 0

be given. Then there exists k ∈ N such that ρ(Fk) < ϵ. If m,n > k then xm ∈ Fm ⊂ Fk

and xn ∈ Fn ⊂ Fk, which shows that ρ(xm, xn) ≤ ρ(Fk) < ϵ, i.e., {xn} is a Cauchy

sequence. Since (X, ρ) is complete, there exists l ∈ X such that limxn = l. Let p ∈ N.
Then for any n ∈ N, xn+p ∈ Fp. Also limxn = limxn+p = l Hence l ∈ F̄p = Fp. Since p

has been chosen arbitrarily, l ∈ Fn for all n ∈ N, thus p ∈ ∩{Fn : n ∈ N}.

2. ⇒ 1.: Conversely, suppose that condition 2 holds.

Let {xn} be a Cauchy sequence in (X, ρ). Put An = {xn, xn+1, xn+2, . . .}, for all n =

1, 2, 3, . . .. Then Ā1 ⊃ Ā2 ⊃ Ā3 ⊃ · · · . Let ϵ > 0 be a real number. The there exists

k ∈ N such that ρ(xm, xn) < ϵ/2 for all m,n ≥ k and hence ρ(Ān) = ρ(An) ≤ ϵ/2 < ϵ for

all n > k. Thus ρ(Ān) → 0 as n → ∞. By condition 2 there exists x0 ∈ ∩{Ān : n ∈ N}.
So x0 is a cluster point of the sequence {xn}. Since {xn} is a Cauchy sequence, xn → x0.

Thus X, ρ) is complete. ■

Definition. 1.58 Let (X, ρ) is a metric space, A ⊂ X. Then A is said to be dense in

(X, ρ) if Ā = X. A is said to be nowhere dense if (Ā)◦ = ∅.

Problem. 1.59 Let (X, ρ) be a metric space, A ⊂ X.

1. Show that A is dense in (X, ρ) if and only if V ∩A ̸= ∅ for all open set V ⊂ X.

2. For any open set V ⊂ X, show that V ∩A ̸= ∅ if and only if V ∩ Ā ̸= ∅.

3. Show that A is nowhere dense if and only if V ̸⊂ A for any open set V ⊂ X.

4. Prove that A is nowhere dense if and only if for all open set V ⊂ X there exists

Sr(x) ⊂ V such that Sr(x) ∩A = ∅.
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Definition. 1.60 Let V be a vector space over the field of real or complex numbers. A

real valued function x 7→ ∥x∥ defined on V is called a norm on V if the following conditions

are satisfied:

1. For all x ∈ V , ∥x∥ ≥ 0 equality holds if and only if x = 0.

2. For any scalar λ for any x ∈ V , ∥λx∥ = |λ| ∥x∥.

3. For all x, y ∈ V , ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

A real or complex vector space with a norm ∥, ∥ defined on it is called a normed linear

space and is usually denoted by (V, ∥, ∥) or simply by V .

The following result can easily be verified.

Theorem. 1.61 Let (V, ∥, ∥) be a normed linear space. Define ρ(x, y) = ∥x − y∥ for all

x, y ∈ V . Then ρ is a metric on V .

Definition. 1.62 The metric defined above is called metric induced by norm.

Example. 1.63 1. In Rn we define

∥x∥ =
√

x21 + x22 + · · ·+ x2n, ∀x = (x1, x2, . . . , xn) ∈ Rn,

one can verify (using Schwartz’s inequality) that ∥, ∥ is a norm on Rn. This is called

the usual norm on Rn. It can easily be verified that the metric on Rn induced by

usual norm is nothing but the usual metric on it.

2. Recall that B[a, b], the set of all real valued bounded functions defined on [a, b] is a

linear space over the field of real numbers. For f ∈ B[a, b] we define

∥f∥ = sup{|f(x) : a ≤ x ≤ b}.

this norm is known as supnorm.

Theorem. 1.64 B[a, b] is a complete metric space (with respect to supnorm metric).

Proof. Let {fn} be a Cauchy sequence in B[a, b]. Let ϵ > 0 be given. Then there exists

a positive integer n1 such that ∥fn − fm∥ < ϵ
3 for all m,n ≥ n1. Let x ∈ [a, b], then

|fn(x) − fm)| ≤ ∥fn − fm∥ < ϵ
3 for all m,n ≥ n1. This shows that for any x ∈ [a, b],

{fn(x)} is a Cauchy sequence in R.

By completeness of R the sequence {fn(x)} is convergent. Let us define g : [a, b] → R by

g(x) = lim
n→∞

fn(x) ∀x ∈ [a, b].
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It remains to show that g ∈ B[a, b] and {fn} → g with respect to supnorm metric. Let

x ∈ [a, b]. Since {fn(x)} → g there exists nx > n1 such that |fn(x) − g(x)| < ϵ
3 for all

n ≥ nx, in particular, |fnx(x)− g(x)| < ϵ
3 . Thus,

|fn(x)− g(x)| ≤ |fn(x)− fnx(x)|+ |fnx(x)− g(x)|

<
ϵ

3
+

ϵ

3
=

2ϵ

3
∀x ∈ [a, b] ∀n > n1.

Thus, sup{|fn(x)− g(x)| : a ≤ x ≤ b} ≤ 2ϵ

3
< ϵ ∀n > n1, i.e.,

∥fn − g∥ < ϵ ∀n > n1.

This shows that {fn} → g with respect to supnorm metric. Also for any x ∈ [a, b],

|g(x)| ≤ ∥g∥ ≤ ∥fn1 − g∥+ ∥fn1∥ < ϵ+ ∥fn1∥, which shows that g ∈ B[a, b].

This completes the proof. ■

Let us denote by C[a, b] the set of all continuous real valued functions defined on [a, b].

Then C[a, b] ⊂ B[a, b].

Theorem. 1.65 The set C[a, b] is closed in B[a, b].

Let f ∈ B[a, b] such that f ∈ C[a, b]. Let ϵ > 0 be a real, choose g ∈ C[a, b] such that

∥f−g∥ < ϵ
3 . Let x0 ∈ [a, b], by continuity of g there exists δ > 0 such that |g(x)−g(x0)| < ϵ

3

for all x ∈ (x0 − δ, x0 + δ) ∩ [a, b]. Now for any x in (x0 − δ, x0 + δ) ∩ [a, b],

|f(x)− f(x0)| ≤ |f(x)− g(x)|+ |g(x)− g(x0)|+ |g(x0)− f(x0)|

<
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ.

This shows that f is continuous at x0. Since x0 has been chosen arbitrarily in [a, b], f is

continuous on [a, b]. Hence f ∈ C[a, b].

Thus C[a, b] is closed in B[a, b]. ■

Theorem. 1.66 For a, b ∈ R, C[a, b] is a complete metric space.

Proof. C[a, b] is a closed subspace of B[a, b]. B[a, b] is a complete metric space. So C[a, b]

is a complete metric space.

Problem. 1.67 1. Write down an independent proof of the fact that C[a, b] is a com-

plete metric space with respect to supnorm metric.

2. Prove that Rn is a complete metric space for all n = 1, 2, 3 . . ..
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2 Continuity, Connectedness, Compactness and Fixed Point
Theorem

2.1 Continuity

Before going to the definition of continuity we introduce some notations and establish

some results.

Let f : X → Y be a function, A ⊂ X,B ⊂ Y then

f(A) = {f(x) : x ∈ A} and f−1(B) = {x ∈ X : f(x) ∈ B}.

If A1, A2 ⊂ X, B1, B2 ⊂ Y , then

(a) f(A1 ∪A2) = f(A1) ∪ f(A2)

(b) f(A1 ∩A2) ⊆ f(A1) ∩ f(A2)

(c) f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2)

(d) f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2).

There are examples where equality in (b) does not hold.

Definition. 2.1 Let (X, ρ), (Y, σ) be two metric spaces, f : X → Y be a function, a ∈ X.

f is said to be continuous at a if for any ϵ > 0 there exists δ > 0 such that, for all x ∈ X,

ρ(x, a) < δ ⇒ σ(f(x), f(a)) < ϵ.

The function f is said to be continuous on X if f is continuous at each point of X.

Theorem. 2.2 Let f : (X, ρ) → (Y, σ) be a function and a ∈ X. Then the following are

equivalent:

1. f is continuous at a.

2. For all ϵ > 0 there exists δ > 0 such that f(Sδ(a)) ⊂ Sϵ(f(a)).

3. For all neighbourhood Nf(a) of f(a), f
−1(Nf(a)) is a neighbourhood of a.

4. For any sequence {xn} in X, limxn = a ⇒ lim f(xn) = f(a).

5. for all A ⊂ X, a ∈ Ā ⇒ f(a) ∈ f(A).

Proof. 1 ⇒ 2: Assume f is continuous at a, ϵ > 0. then there exists δ > 0 such that for

all x ∈ X, ρ(x, a) < δ ⇒ σ(f(x), f(a)) < ϵ. So x ∈ Sδ(a) ⇒ ρ(x, a) < δ ⇒ σ(f(x), f(a)) <

ϵ ⇒ f(x) ∈ Sϵ(f(a)).
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2 ⇒ 3: Assume 2 holds, Nf(a) is a neighbourhood of f(a). Then there exists ϵ > 0

such that Sϵ(f(a)) ⊂ Nf(a). By 2 there exists δ.0 such that f(Sδ(a)) ⊂ Sϵ(f(a)), i.e.,

f(Sδ(a)) ⊂ Nf(a) and hence Sδ(a) ⊂ f−1(Nf(a)). Thus f−1(Nf(a)) is a neighbourhood of

a.

3 ⇒ 4: Let 3 hold. {xn} be a sequence in X converging to a. Let ϵ > 0. Then Sϵ(f(a))

is a neighbourhood of f(a). By 3 f−1(Sϵ(f(a)) is a neighbourhood of a. Since xn → a,

there exists N ∈ N such that xn ∈ f−1(Sϵ(f(a)) for all n ≥ N . Thus f(xn) ∈ Sϵ(f(a)) for

all n ≥ N . Hence {f(xn)} converges to f(a).

4 ⇒ 5: Let a ∈ Ā. Then there exists a sequence {xn} in A which converges to A. By

4 the sequence {f(xn)} converges to f(a). But {f(xn)} is a sequence in f(A), thus f(a)

belongs to f(A).

5 ⇒ 1: Assume 5 holds. If possible suppose that f is not continuous at a. Then there

exists ϵ > 0 such that for all δ > 0 there exists x ∈ X such that ρ(x, a) < δ but

σ(f(x), f(a)) ≥ ϵ. In particular, for all n ∈ N there exists xn ∈ X such that ρ(xn, a) <
1
n

but σ(f(xn), f(a)) ≥ ϵ. Put A = {x1, x2, . . .}. Then since ρ(xn, a) <
1
n → 0 as n → ∞,

a ∈ Ā. Also f(A) = {f(x1), f(x2), . . .} and Sϵ(f(a)) ∩ f(A) = ∅ which shows that

f(a) ̸∈ f(A) — a contradiction. Thus 5 ⇒ 1. ■

Definition. 2.3 Let (X, ρ), (Y, σ) be two metric spaces, a ∈ X and f : X → Y be a

function. f is said to preserve convergence at a if for any sequence {xn} converging to

a the sequence {f(xn)} converges to f(a). f is said to preserve nearness at a if for any

A ⊂ X, a ∈ Ā implies that f(a) ∈ f(A).

In view of the last result one can say that a function f is continuous at a point if and only

if it preserves convergence at that point if and only if it preserves nearness at that point.

Theorem. 2.4 Let (X, ρ), (Y, σ) be two metric spaces, f : X → Y be a function. Then

the followings are equivalent:

1. f is continuous on X.

2. For all open V ⊂ Y , f−1(V ) is open in (X, ρ).

3. For all closed F ⊂ Y , f−1(F ) is closed in (X, ρ).

Proof. 1 ⇒ 2 : Assume that 1 holds, V ⊂ Y is open. Let a ∈ f−1(V ). Then f(a) ∈ V .

Since V is open there exists ϵ > 0 such that Sϵ(f(a)) ⊂ V . By continuity of f at a, there

exists δ > 0 such that f(Sδ(a)) ⊂ Sϵ(f(a)) ⊂ V which implies that Sδ(a) ⊂ f−1(V ). Thus

a is an interior point of f−1(V ). Since a has been chosen arbitrarily in f−1(V ), each point

of it is interior point of it. Thus f−1(V ) is open.
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2 ⇒ 3 : Assume that 2 holds, F ⊂ Y is closed. Then V = Y − F is an open set. By 2

f−1(V ) is an open set in (X, ρ). But f−1(V ) = f−1(Y −F ) = X − f−1(F ). Thus f−1(F )

is a closed set.

3 ⇒ 1 : Assume that 3 holds, a ∈ X. If possible, suppose that f be not continuous at a.

Then there exists ϵ > 0 such that for all δ > 0 there exists x ∈ X such that ρ(a, x) < δ

but σ(f(a), f(x)) ≥ ϵ. In particular, taking δ = 1
n , we get for all n in N, xn ∈ X such

taht ρ(a, xn) <
1
n but σ(f(a), f(xn)) ≥ ϵ. Take A = {f(xn) : n ∈ N} and F = Ā. Then

F is a closed set in (Y, σ) and f(a) ̸∈ F . Note that xn ∈ f−1(F ) for all n ∈ N. Since

xn → a, a ∈ f−1(F ) but a ̸∈ f−1(F ) which shows that f−1(F ) is not a closed set — a

contradiction. Thus 1 holds. ■

The next theorem states that the composition of two continuous functions is again a

continuous function.

Theorem. 2.5 Let f : (X, ρ) → (Y, σ) and g : (Y, σ) → (Z, µ) be continuous functions.

Then g ◦ f : (X, ρ) → (Z, µ) is continuous.

Proof. Let V be an open set in (Z, µ). Then by continuity of g, g−1(V ) is an open set

in (Y, σ). Again by continuity of f , f−1(g−1(V )) is open in (X, ρ), i.e., (f−1 ◦ g−1)(V ) is

open in (X, ρ). Since (g ◦ f)−1 = f−1 ◦ g−1, the result follows. ■

Theorem. 2.6 Let f : (X, ρ) → (Y, σ) and g : (Y, σ) → (Z, µ) be two functions, a ∈ X.

If f is continuous at a and g is continuous at f(a) then g ◦ f is continuous is continuous

at a.

Proof. Let {xn} be a sequence in X converging to a. Then by continuity of f at a the

sequence {f(xn)} in Y converges to f(a). Again by continuity of g at the point f(a)

the sequence {g(f(xn))} in Z converges to g(f(a)). Thus for every sequence {xn} in X

converging to a the sequence {(g◦f)(xn)} in Z converges to (g◦f)(a). So g◦f is continuous

at a. ■

Definition. 2.7 Let f : (X, ρ) → (Y, σ) be a function. Then f is said to be uniformly

continuous on X if for all ϵ > 0 there exists δ > 0 (depending on ϵ only) such that

∀x1, x2 ∈ X, ρ(x1, x2) < δ ⇒ σ(f(x1), f(x2)) < ϵ.

It can be noted that every uniformly continuous function is continuous. the converse is

not true, i.e., there are functions which are continuous but not uniformly continuous. An

example of such a function will be given later.

Theorem. 2.8 If f : (X, ρ) → (Y, σ) and g : (Y, σ) → (Z, µ) are two uniformly continuous

functions then g ◦ f : (X, ρ) → (Z, µ) is uniformly continuous.
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Proof. Let ϵ > 0 be a real number. By uniform continuity of g there exists δ1 > 0 such

that for all y1, y2 ∈ Y , σ(y1, y2) < δ1 ⇒ µ(g(y1), g(y2)) < ϵ. Again by unifor continuity of

f there exists δ > 0 such that for all x1, x2 ∈ X, ρ(x1, x2) < δ ⇒ σ(f(x1), f(x2)) < δ1.

Thus for all x1, x2 ∈ X, ρ(x1, x2) < δ ⇒ σ(f(x1), f(x2)) < δ1 ⇒ µ(g(f(x1)), g(f(x2))) < ϵ,

i.e., ρ(x1, x2) < δ ⇒ µ(g ◦ f(x1)), g ◦ f(x2))) < ϵ. Hence g ◦ f is uniformly continuous. ■

Before going to next result we define the distance between two sets.

Definition. 2.9 Let Let A,B be two nonempty subsets of a metric space (X, ρ). Then

the distance between two sets A and B is denoted by ρ(A,B) and is defined by

ρ(A,B) = inf{ρ(a, b) : a ∈ A, b ∈ B}.

By definition we assume that ρ(A, ∅) = ∞. For x ∈ X, we write ρ(x,A) for ρ({x}, A).

Theorem. 2.10 Let (X, ρ) be a metric space, A ⊂ X,A ̸= ∅. Then the function f : X →
R, defined by f(x) = ρ(x,A) ∀x ∈ X, is uniformly continuous.

Proof. Let x1, x2 ∈ X and a ∈ A. Then

ρ(x1, a) ≤ ρ(x1, x2) + ρ(x2, a)

⇒ inf{ρ(x1, a) : a ∈ A} ≤ ρ(x1, x2) + inf{ρ(x2, a) : a ∈ A}

⇒ ρ(x1, A) ≤ ρ(x1, x2) + ρ(x2, A)

⇒ ρ(x1, A)− ρ(x2, A) ≤ ρ(x1, x2)

⇒ f(x1)− f(x2) ≤ ρ(x1, x2).

Similarly, f(x2)−f(x1) ≤ ρ(x1, x2) and hence |f(x1)−f(x2)| ≤ ρ(x1, x2) for all x1, x2 ∈ X.

Thus f is uniformly continuous. ■

Corollary. 2.11 Let A be a nonempty subset of a metric space (X, ρ). Then

Ā = {x ∈ X : ρ(x,A) = 0}.

Proof. Let x ∈ X and ρ(x,A) = 0. Then Sϵ(x)∩A ̸= ∅ for all ϵ > 0, thus x ∈ Ā. Hence

{x ∈ X : ρ(x,A) = 0} ⊂ Ā. ■

Note that f : X → R defined by f(x) = ρ(x,A) is continuous. Since for any x ∈ A

f(x) = 0, it follows that A ⊂ f−1({0}). Also {0} being a closed set f−1({0}) is closed and

hence Ā ⊂ f−1({0}) = {x ∈ X : ρ(x,A) = 0}. So Ā = {x ∈ X : ρ(x,A) = 0}.

An important property of a uniformly continuous function is that it carries Cauchy se-

quences to Cauchy sequences.
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Theorem. 2.12 Let f : (X, ρ) → (Y, σ) be a uniformly continuous function. If {xn} is a

Cauchy sequence in (X, ρ) then {f(xn)} is a Cauchy sequence in (Y, σ).

Proof. Let ϵ > 0 be a real. Then there exists δ > 0 such that for all x, y ∈ X,

σ(f(x), f(y)) < ϵ whenever ρ(x, y) < δ. Since {xn} is a cauchy sequence one can find

N ∈ N such that ρ(xm, xm) < δ for all m,n ≥ N . Hence σ(f(xm), f(xn)) < ϵ for all

m,n ≥ N . Thus {f(xn)} is a Cauchy sequence in (Y, σ). ■

Below we give an example of continuous function which is not uniformly continuous.

Example. 2.13 define f : R−{0} → R by f(x) = 1
x ,∀x ∈ R−{0}. Then f is continuous

on R−{0}. Note that { 1
n} is a Cauchy sequence in R−{0}. Also note that {f( 1n)} = {n}

which is not a Cauchy sequence in R. Thus f is not uniformly continuous.

Definition. 2.14 Let k be a positive integer. For all i ∈ {1, 2, . . . , k} let us define a map

πi : Rk → R by πi(x) = xi ∀x = (x1, x2, . . . , xk) ∈ Rk. πi is called the i-th projection map

from Rk to R.

Theorem. 2.15 The projection map πi : Rk → R, 1 ≤ i ≤ k, is uniformly continuous.

Proof. If x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) ∈ Rk, 1 ≤ i ≤ k, then |πi(x)− πi(y)| =
|xi − yi| ≤

√∑k
j=i(xj − yj)2 = ||x− y||. Hence the result follows. ■

Theorem. 2.16 Let (X, ρ) be a metric space, k be a positive integer and f : (X, ρ) → Rk

be a function. Then f is uniformly continuous if and only if πi ◦ f : X → R is uniformly

continuous for all i = 1, 2, . . . , k.

If f is uniformly continuous then, since πi is uniformly continuous for all i = 1, 2, . . . , k,

it follows that πi ◦ f is uniformly continuous for all i = 1, 2, . . . , k.

Conversely, suppose that πi ◦ f is uniformly continuous for all i = 1, 2, . . . , k. Let ϵ > 0

be a real. Then for each i ∈ {1, 2, . . . , k} there exists δi > 0 such that for all x, y ∈ X,

ρ(x, y) < δi ⇒ |πi ◦ f(x)−πi ◦ f(y)| < ϵ√
k
. Let δ = min{δ1, δ2, . . . , δk}. Then for x, y ∈ X,

ρ(x, y) < δ ⇒ |πi ◦ f(x)− πi ◦ f(y)| <
ϵ√
k

∀i = 1, 2, . . . , k.

Hence if ρ(x, y) < δ then

||f(x)− f(y)|| =

√√√√ k∑
i=1

(πi ◦ f(x)− πi ◦ f(y))2 < ϵ.

This shows that f is uniformly continuous. ■
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2.2 Connectedness

Definition. 2.17 A metric space (X, ρ) is said to be connected if there exist no open sets

G1, G2 ⊂ X such that G1 ̸= ∅ ̸= G2, G1 ∩G2 = ∅ and X = G1 ∪G2, i.e., if X can not be

expressed as a union of two disjoint non-empty open sets.

A metric space or its subset which is not connected is called disconnected.

It can be noted that if X is disconnected metric space then X is expressed as X = G1∪G2,

where G1, G2 are disjoint non-empty open sets. Thus G1 = X −G2, since G2 is an open

set its complement G1 is a closed set. Thus G1 is an open set as well as a closed set, called

a clopen set. Similarly G2 is also a clopen set.

On the other hand if X contains a clopen set V , ∅ ≠ V ̸= X, Then V and X−V are both

non-empty open sets and X = V ∪ (X − V ) which shows that X is a disconnected metric

space.

Thus we conclude that

Theorem. 2.18 A metric space is disconnected if and only if it contains a non-trivial

clopen set.

Definition. 2.19 Let (X, ρ) be a metric space. A set A ⊂ X is said to be connected if

the subspace (A, ρA) is connected.

Theorem. 2.20 Let A be a subset of a metric space (X, ρ). Then A is connected if and

only if there exist no two open sets G1, G2 ⊂ X such that A ⊂ G1∪G2, A∩G1 ̸= ∅ ≠ A∩G2

and A ∩G1 ∩G2 = ∅.

Proof. Suppose that A is connected, i.e., (A, ρA) is a connected metric space. If possible,

let there exist open sets G1, G2 in (X, ρ) such that A ⊂ G1 ∪ G2, A ∩ G1 ̸= ∅ ̸= A ∩ G2

and A ∩ G1 ∩ G2 = ∅. Put V1 = A ∩ G1, V2 = A ∩ G2. Then V1, V2 are open sets in

(A, ρA), V1 ̸= ∅ ̸= V2, V1 ∩ V2 = ∅ and A = V1 ∪ V2. Thus (A, ρA) is not connected — a

contradiction.

Conversely suppose that the condition of the theorem holds. We claim that A is connected.

If not, then (A, ρA) is not connected and hence there exists non-empty open sets V1, V2 in

(A, ρA) such that A = V1 ∪ V2 and V1 ∩ V2 = ∅. So there exists open sets G1, G2 in (X, ρ)

such that V1 = A ∩G1, V2 = A ∩G2. Thus we found two open sets G1, G2 ⊂ X such that

A ⊂ G1 ∪G2, A ∩G1 ̸= ∅ ≠ A ∩G2 and A ∩G1 ∩G2 = ∅ — a contradiction. ■

Corollary. 2.21 If A is an open set in a metric space (X, ρ), then A is connected if and

only if there exist no two open sets G1, G2 ⊂ A such that A = G1 ∪G2, G1 ̸= ∅ ≠ G2 and

G1 ∩G2 = ∅. ■
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Remark. 2.22 If (X, ρ) is a metric space and a ∈ X then {a} is connected. Also the

empty subset of each metric space is connected.

Example. 2.23 Let A be a set of rationals containing more than one point. Then A is

not connected in R.

Let x, y ∈ A such that x < y. Choose an irrational ξ such that x < ξ < y. Set

G1 = (−∞, ξ), G2 = (ξ,∞). Then A ⊂ G1∪G2, A∩G1 ̸= ∅ ≠ A∩G2 and A∩G1∩G2 = ∅.
So A is not connected.

Theorem. 2.24 Let I be a subset of R. Then I is connected if and only if I is an interval

in R.

Proof. Recall that a set I ⊂ R is called an interval if for all x, y ∈ I for all z ∈ R,
x < z < y implies that z ∈ I.

Let I be a connected subset of R. We claim that I is an interval of R. If not, then there

exists a, b ∈ I, x ∈ R such that a < x < b and x ̸∈ I. Set G1 = (−∞, x), G2 = (x,∞). The

G1, G2 are open sets in R such that I ⊂ G1∪G2, I ∩G1 ̸= ∅ ≠ I ∩G2 and I ∩G1∩G2 = ∅.
Thus I is not connected — a contradiction.

Conversely, let I be an interval of R. If I = ∅ or I contains a single point then I

is connected. Let I contains more than one point. If possible, suppose that I is not

connected. Then there exist open sets G1, G2 ⊂ R such that I ⊂ G1 ∪ G2, I ∩ G1 ̸= ∅ ̸=
I∩G2 and I∩G1∩G2 = ∅. Choose a ∈ I∩G1, b ∈ I∩G2. Since a ̸= b, without any loss of

generality we may assume that a < b. Let c = a+b
2 . Then a < c < b. I being an interval,

c ∈ I. So, either c ∈ G1 or c ∈ G2, also c ̸∈ G1 ∩ G2. If c ∈ G1, we put a1 = c, b1 = b, if

c ∈ G2, put a1 = a, b1 = c. In any case we found reals a1 ∈ G1, b1 ∈ G2, [a1, b1] ⊂ [a, b]

and b1 − a1 =
1
2(b− a).

Suppose that we have found reals a1, a2, . . . , an ∈ G1, b1, b2, . . . , bn ∈ G2 such that

[a1, b1] ⊃ [a2, b2] ⊃ · · · ⊃ [an, bn] and bk−ak = b−a
2k

for k = 1, 2, . . . , n. Put cn = 1
2(an+bn).

then cn ∈ I ⊂ G1 ∪ G2. Also cn ̸∈ G1 ∩ G2. If cn ∈ G1, put an+1 = cn, bn+1 = bn, if

cn ∈ G2, put an+1 = an, bn+1 = cn. Thus [an+1, bn+1] ⊂ [an, bn] and bn+1 − an+1 =
1
2(bn − an) =

1
2n+1 (b− a).

Thus using induction we can conclude that there exist a sequence of closed intervals such

that an ∈ G1, bn ∈ G2 ∀n ∈ N, [a, b] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ · · · and bn − an = b−a
2n ∀n ∈ N.

By Cantor’s Intersection property there exists ξ ∈ [an, bn] ∀n ∈ N, i.e., an ≤ ξ ≤ bn ∀n ∈
N. Also limn→∞ an = ξ = limn→∞ bn. So ξ ∈ I ⊂ G1 ∪G2. So either ξ ∈ G1 or ξ ∈ G2.

If ξ ∈ G1 then there exists ϵ > 0 such that (ξ − ϵ, ξ + ϵ) ⊂ G1. As limn→∞ bn = ξ, there

exists K ∈ N such that bn ∈ (ξ − ϵ, ξ + ϵ) for all n ≥ K. hence bn ∈ G1 ∩ G2 ∩ I for all

n ≥ K — a contradiction to the fact that G1 ∩ G2 ∩ I = ∅. Similarly, if ξ ∈ G1 then we

can show that there exists M ∈ N such that an ∈ G1 ∩ G2 ∩ I for all n ≥ M — again a
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contradiction.

Thus I is connected. ■

The next theorem states that continuity of function preserves the connectedness of sets.

Theorem. 2.25 Suppose that f : (X, ρ) → (Y, σ) be a continuous function and A ⊂ X be

connected. Then f(A) is a connected set in (Y, σ).

Proof. If possible, suppose that f(A) is not connected. Then there exists open sets G1, G2

in (Y, σ) such that f(A) ⊂ G1 ∪ G2, f(A) ∩ G1 ̸= ∅ ≠ f(A) ∩ G2 and f(A) ∩ G1 ∩ G2 =

∅. This implies that A ⊂ f−1(G1) ∪ f−1(G2), A ∩ f−1(G1) ̸= ∅ ̸= A ∩ f−1(G2) and

A ∩ f−1(G1) ∩ f−1(G2) = ∅. Since f−1(G1), f
−1(G2) are open sets this shows that A is

not connected — a contradiction.

Thus f(A) is connected. ■

Problem. 2.26 Prove that if a continuous function f : R → R takes only rational values

then it is constant.

Remark. 2.27 In view of the above two results we observe that if f : I → R is continuous,

where I is an interval in R, then f(I) is also an interval in R, which is nothing but the

intermediate value theorem of real analysis.

Theorem. 2.28 Let (X, ρ) be a metric space A ⊂ X. If A is connected and if A ⊂ B ⊂ Ā

then B is also connected.

Proof. If possible, suppose that B is disconnected. Then there are open sets G1, G2 ⊂ X

such that B ⊂ G1 ∪G2, B ∩G1 ̸= ∅ ≠ B ∩G2 and B ∩G1 ∩G2 = ∅.

Choose x ∈ B∩G1. Then G1 is a neighbourhood of x and since x ∈ Ā we have G1∩A ̸= ∅.
Similarly G2 ∩ A ̸= ∅. Also since B ∩G1 ∩G2 = ∅ and A ⊂ B we have A ∩G1 ∩G2 = ∅.
This implies that A is disconnected — a contradiction. Hence B must be connected. ■

Corollary. 2.29 If A is a connected subset of a metric space then Ā is also connected.

This follows by taking B = Ā in the above theorem. ■

Definition. 2.30 Let E be a subset of a metric space (X, ρ). Set

AE = {A ⊂ E : A is connected }.

Note that AE is partially ordered by the set inclusion ‘⊂’. A maximal element of (AE ,⊂)

is called a component of E.
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Thus components of a set E are the maximal (w.r.t. set inclusion) connected subsets of

E, i.e., A ⊂ E is a component of E if and only if the following conditions hold:

1. A is a connected subset of E.

2. If B ⊂ E is connected and A ⊂ B then A = B.

The set E itself is connected if E is the only component of E.

In view of the Corollary 2.29 it follows that

Theorem. 2.31 Components of a metric space are closed sets.

Definition. 2.32 A set E ⊂ X, where (X, ρ) is a metric space, is called totally discon-

nected set if {{x} : x ∈ E} is the set of components of E.

Problem. 2.33 Prove that Q is totally disconnected.

Theorem. 2.34 Let {Ei : i ∈ I} be a family of connected subsets of a metric space (X, ρ)

such that ∩i∈IEi ̸= ∅. Then ∪i∈IEi is connected.

Proof. If possible suppose that E = ∪i∈IEi be not connected. Then there exist open

sets G1, G2 ⊂ X such that E ∩ G1 ̸= ∅ ≠ E ∩ G2, E ⊂ G1 ∪ G2 and E ∩ G1 ∩ G2 = ∅.
Choose ξ ∈ ∩i∈IEi. Note that ξ ∈ E ⊂ G1 ∪G2. Since E ∩G1 ∩G2 = ∅, either ξ ∈ G1 or

ξ ∈ G2. Now,

ξ ∈ G1 ⇒ ξ ∈ G1 ∩ Ei ∀i ∈ I ⇒ G1 ∩ Ei ̸= ∅ ∀i ∈ I

⇒ G2 ∩ Ei = ∅ ∀i ∈ I,

since Ei ∩G1 ∩G2 = ∅ ∀i ∈ I and each Ei is connected .

Hence ∪{Ei ∩ G2 : i ∈ I} = ∅, i.e., ∪{Ei : i ∈ I} ∩ G2 = ∅, i.e., E ∩ G2 = ∅ — a

contradiction.

Similarly, if ξ ∈ G2 we can show that E ∩ G1 = ∅ — again a contradiction. Hence E is

connected. ■

Definition. 2.35 Let (X, ρ) be a metric space, E ⊂ X and x ∈ E. Define

C(x,E) = ∪{A ⊂ E : x ∈ A, and A is connected}.

Then by above result C(x,E) is a connected subset of E.

Theorem. 2.36 Let (X, ρ) be a metric space, E ⊂ X. Then,
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1. For all x in E, C(x,E) is a maximal connected subset of E.

2. If C(x,E) ∩ C(y,E) ̸= ∅ for some x, y ∈ E then C(x,E) = C(y,E).

3. E = ∪{C(x,E) : x ∈ E}.

Proof.

1. Obviously C(x,E) is a connected subset of E. Let B be a connected subset of E

and x ∈ E such that C(x,E) ⊂ B. So, x ∈ B. Then by definition of C(x,E) we

have B ⊂ C(x,E). Hence C(x,E) = B, i.e., C(x,E) is a maximal connected subset

of E.

2. Let x, y ∈ E be such that C(x,E) ∩ C(y,E) ̸= ∅. Then C(x,E) ∪ C(y,E) is

a connected subset of E and also C(x,E) ⊂ C(x,E) ∪ C(y,E). By maximality

of C(x,E) we have C(x,E) = C(x,E) ∪ C(y,E). Similarly, we can show that

C(y,E) = C(x,E) ∪ C(y,E). Thus C(x,E) = C(y,E).

3. Immediately follows from the fact x ∈ C(x,E) ⊂ E. ■

Remark. 2.37 The above result shows that the set of components of subset of a metric

space forms a partition of the subset.

Problem. 2.38 Let (X, ρ) be a metric space, E ⊂ X. Define a relation ‘∼’ on E by

x ∼ y ⇐⇒ there exists a connected set A ⊂ E such that {x, y} ⊂ A.

Show that ‘∼’ is an equivalence relation on E and the equivalence class containing x is

C(x,E).

2.3 Compactness

Definition. 2.39 Let (X, ρ) be a metric space. A family {Vi : i ∈ I} of open sets in

(X, ρ) is said to be an open cover of X if X ⊂ ∪{Vi : i ∈ I}. In a similar manner one can

define a closed cover or simply a cover.

If J ⊂ I such that X ⊂ ∪{Vi : i ∈ J}, then {Vi : i ∈ J} is called a subcover of {Vi : i ∈ I},
if J is a finite set this subcover is called a finite subcover.

Definition. 2.40 A metric space (X, ρ) is said to be compact if every open cover of it

has a finite subcover. If A ⊂ X then A is called a compact set if (A, ρA) is a compact

metric space.
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Example. 2.41 1. Every finite metric space is compact.

2. R is not compact, {(−n, n) : n ∈ N} is an open cover of R having no finite subcover.

3. Let X be an infinite set, consider the discrete metric d on X, i.e., d(x, y) = 1 if

x ̸= y, d(x, x) = 0, for all x, y ∈ X. Let A be an infinite subset of X. Then for any

x ∈ X, S 1
2
(x) = {x}. Note that {S 1

2
(a) : a ∈ X} is an open cover of A having no

finite subcover. So, A is not compact. However d(A) = 1 shows hat A is a bounded

set.

Theorem. 2.42 Let (X, ρ) be a metric space, Y ⊂ X. Then following are equivalent:

1. Y is compact.

2. For each family {Vi : i ∈ I} of open sets in (X, ρ), Y ⊂ ∪{Vi : i ∈ I} implies that

there exist i1, i2, . . . , in ∈ I such that Y ⊂ Vi1 ∪ Vi2 ∪ · · · ∪ Vin.

Proof. 1 ⇒ 2 : Let Y be compact. Then (Y, ρY ) is compact. Let {Vi : i ∈ I} be a

family of open sets in (X, ρ) such that Y ⊂ ∪{Vi : i ∈ I}. Put Wi = Vi ∩ Y for all i ∈ I.

Then each Wi is an open set in the subspace (Y, ρY ). Also Y ⊂ ∪{Wi : i ∈ I}. Thus

{Wi : i ∈ I} is an open cover of Y . By compactness of Y there exist i1, i2, . . . , in ∈ I

such that Y ⊂ Wi1 ∪ Wi2 ∪ · · · ∪ Win . Since Wi ⊂ Vi for all i ∈ I, it follows that

Y ⊂ Vi1 ∪ Vi2 ∪ · · · ∪ Vin .

2 ⇒ 1 : Assume 2 holds. Let {Vi : i ∈ I} be an open cover of Y in (Y, ρY ). Since for each

i in I, Vi is open in (Y, ρY ) there exists open set Wi in (X, ρ) such that Vi = Wi ∩ Y . So,

Y ⊂ ∪{Wi : i ∈ I}. By 2 there exist i1, i2, . . . , in in I such that Y ⊂ Wi1 ∪Wi2 ∪ · · ·∪Win .

This implies that Y ⊂ Vi1 ∪ Vi2 ∪ · · · ∪ Vin . Hence Y is compact. ■

The next two results relates continuity with compactness.

Theorem. 2.43 Let f : (X, ρ) → (Y, σ) be a continuous function. If A ⊂ X is a compact

set then f(A) ⊂ Y is also a compact set.

Proof. Let {Vi : i ∈ I} be a family of open sets in (Y, σ) such that f(A) ⊂ ∪{Vi : i ∈ I}.
Then A ⊂ f−1(∪{Vi : i ∈ I}) = ∪{f−1(Vi) : i ∈ I} Since f is continuous f−1(Vi) is

open in (X, ρ) for each i ∈ I. By compactness of A there exist i1, i2, . . . , in ∈ I such that

A ⊂ f−1(Vi1) ∪ f−1(Vi2) ∪ · · · ∪ f−1(Vin). This implies that f(A) ⊂ Vi1 ∪ Vi2 ∪ · · · ∪ Vin .

Hence f(A) is compact. ■

Theorem. 2.44 Let f : (X, ρ) → (Y, σ) be a continuous function. If (X, ρ) is a compact

metric space then f is uniformly continuous.
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Proof. Let ϵ > 0. For any x in X, since f is continuous at x, there exists δ(x) > 0 such

that for all y in X,

y ∈ Sδ(x)(x) ⇒ σ(f(x), f(y)) <
ϵ

2
(1)

Note that {S δ(x)
2

(x) : x ∈ X} is an open cover of X. By compactness of X there are

x1, x2, . . . , xn in X such that

X ⊂ S δ(x1)
2

(x1) ∪ S δ(x2)
2

(x2) ∪ · · · ∪ S δ(xn)
2

(xn).

Set δ = min{ δ(x1)
2 , δ(x2)

2 , . . . , δ(xn)
2 }. Clearly δ > 0. Let x, y ∈ X such taht ρ(x, y) < δ.

Then there exists i = 1, 2, . . . , n such taht x ∈ S δ(xi)

2

(xi) ⊂ Sδ(xi)(xi). Also ρ(xi, y) ≤

ρ(xi, x) + ρ(x, y) < δ(xi)
2 + δ ≤ δ(xi)

2 + δ(xi)
2 = δ(xi). Thus y ∈ Sδ(xi)(xi). Hence By (1),

σ(f(x), f(y)) ≤ σ(f(x), f(xi)) + σ(f(xi), f(y)) <
ϵ

2
+

ϵ

2
= ϵ.

Thus f is uniformly continuous. ■

Theorem. 2.45 Every compact subset of a metric space is closed.

Proof. Let (X, ρ) be a be a metric space, A ⊂ X be compact. Choose x ∈ X − A It

is sufficient to show that x is not a limit point of A. Now, for all a ∈ A, ρ(x, a) > 0.

Let δ(a) = 1
2ρ(x, a). Then {Sδ(a)(a) : a ∈ A} is an open cover of A. Since A is compact

there exist a1, a2, . . . , an ∈ A such taht A ⊂ Sδ(a1)(a1) ∪ Sδ(a2)(a2) ∪ · · · ∪ Sδ(an)(an). Let

δ = min{δ(a1), δ(a2), . . . , δ(an)}. Since Sδ(ai)(x) ∩ Sδ(ai)(ai) = ∅ for all i = 1, 2, . . . , n it

follows that Sδ(x) ∩ Sδ(ai)(ai) = ∅ for all i = 1, 2, . . . , n and hence Sδ(x) ∩A = ∅. Thus x
is not a limit point of A. So A is closed. ■

Theorem. 2.46 Every closed subset of a compact metric space is compact.

Proof. Let (X, ρ) be a metric space, A ⊂ X be closed. Let {Vi : i ∈ I} be a family of

open sets covering A. Let V = X − A. Then V is an open set, so the family {V } ∪ {Vi :

i ∈ I} is an open cover of X. By compactness of X this cover has a finite subcover,

say V, Vi1 , Vi2 , . . . , Vin . Thus X ⊂ V ∪ Vi1 ∪ Vi2 ∪ . . . ∪ Vin . This implies that A ⊂
V ∪Vi1 ∪Vi2 ∪ . . .∪Vin . Since A∩V = ∅, A ⊂ Vi1 ∪Vi2 ∪ . . .∪Vin . Hence A is compact. ■

Definition. 2.47 A subset A of a metric space (A, ρ) is said to be a totally bounded set

if for any ϵ > 0 there exist x1, x2, . . . , xn in X such that A ⊂ Sϵ(x1)∪Sϵ(x2)∪· · ·∪Sϵ(xn).

It can be observed that a subset of a totally bounded subset is totally bounded. It can

also be observed that every totally bounded set is bounded, however the converse is not

true. There are sets in metric spaces which are bounded but not totally bounded.
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Example. 2.48 Consider any infinite set X with discrete metric d. Let A be an infinite

subset of X. If we take ϵ = 1
2 then for any x ∈ X, Sϵ(x) = {x}. Hence it is impossible to

find a finite number of points x1, x2, . . . , xn in A for which A ⊂ Sϵ(x1)∪Sϵ(x2)∪· · ·∪Sϵ(xn).

Thus A is totally bounded. However d(A) = 1 shows that A is bounded.

Theorem. 2.49 Let A be a subset of a metric space (X, ρ). Then A is totally bounded if

and only if for any ϵ > 0 there exist finitely many subsets A1, A2, . . . , An of A such that

A = A1 ∪A2 ∪ · · · ∪An and ρ(Ak) ≤ ϵ for all k = 1, 2, . . . , n.

Proof. Let A be totally bounded and ϵ > 0. Then there exists x1, x2, . . . , xn ∈ A such

that A ⊂ Sϵ/2(x1) ∪ Sϵ/2(x2) ∪ · · · ∪ Sϵ/2(xn). Put Ak = A ∩ Sϵ/2(xk) for k = 1, 2, . . . , n.

Then ρ(Ak) ≤ ϵ for all k = 1, 2, . . . , n and A = A1 ∪A2 ∪ · · · ∪An.

Convversely, let the condition hold and ϵ > 0. Choose a real number δ such that 0 < δ < ϵ.

By the condition there exists A1, A2, . . . , An ⊂ A such taht ρ(Ai) ≤ δ for all i = 1, 2, . . . , n

and A = A1 ∪ A2 ∪ · · · ∪ An. Choose xi ∈ X such that Ai ⊂ Sϵ(xi) for all i = 1, 2, . . . , n.

Thus A ⊂ ∪{Sϵ(xi) : i = 1, 2, . . . n}, i.e., A is totally bounded. ■

Theorem. 2.50 A subset of a metric space is totally bounded if and only if every sequence

in it has a Cauchy subsequence.

Proof. Let (X, ρ) be a metric space, A ⊂ X. Assume that A is totally bounded. Let

{xn} be a sequence in A. Choose subsets A11, A12, . . . , A1n1 of A such that ρ(A1i) ≤ 1 for

i = 1, 2, . . . , n1 and A = A11 ∪ A12 ∪ . . . ∪ A1n1 . Then there exists i ∈ {1, 2, . . . , n1} such

that A1i contains xn for infinitely many n. We denote this set by B1, then B1 is totally

bounded. Again choose subsets A21, A22, . . . , A2n2 of B1 such that ρ(A2i) ≤ 1
2 for all

i ∈ {1, 2, . . . , n2} and B1 = A21 ∪A22 ∪ . . .∪A2n2 . Now one of the sets A21, A22, . . . , A2n2

contains xn for infinitely many n in N. Call this set B2. Assume that we have found

B1, B2, . . . , Bk such taht A ⊃ B1 ⊃ · · · ⊃ Bk, ρ(Bi) ≤ 1
i for all i = 1, 2, . . . , k and each Bi

contains xn for infinitely many n. By arguments similar to those used above, we can find

Bk+1 ⊂ Bk such that ρ(Bk+1) ≤ 1
k+1 and Bk+1 contains xn for infinitely many n. So, by

induction there exist subsets B1, B2, . . . of A such that

1. A ⊃ B1 ⊃ B2 ⊃ · · · .

2. ρ(Bk) ≤ 1
k for all k ∈ N.

3. Each Bk contains xn for infinitely many n.

Now choose a positive integer n1 such that xn1 ∈ B1. Suppose we have chosen integers

n1 < n2 < · · · < nk such that xni ∈ Bi for i = 1, 2, . . . , k. Since Bk+1 contains infinitely

many xn we can find a positive integer nk+1 > nk such that xnk+1
∈ Bk+1. So, again by

induction we get a subsequence {xnk
} of {xn} such that xnk

∈ Bk for all k ∈ N.
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Let ϵ > 0. Choose a positive integerm such that 1
m < ϵ. Whenever i, j > m, xni , xnj ∈ Bm,

since ρ(Bm) ≤ 1
m , ρ(xni , xnj ) ≤ 1

m < ϵ. Therefore, {xxk
} is a Cauchy subsequence of {xn}.

Conversely, suppose that every sequence in A has a Cauchy subsequence. If possible,

suppose that A is not totally bounded. Then there exists ϵ > 0 such that for all finitely

many points x1, x2, . . . , xn in A, A ̸⊂ Sϵ(x1) ∪ Sϵ(x2) ∪ · · · ∪ Sϵ(xn). Choose x1 ∈ A, x2 ∈
A − Sϵ(x1). Suppose that we have found x1, x2, . . . , xn ∈ A such taht xi ∈ A − Sϵ(x1) ∪
Sϵ(x2) ∪ · · · ∪ Sϵ(xi) for all i = 1, 2, . . . , n. Since A ̸⊂ Sϵ(x1) ∪ Sϵ(x2) ∪ · · · ∪ Sϵ(xn), we

can find xn+1 ∈ A− Sϵ(x1) ∪ Sϵ(x2) ∪ · · · ∪ Sϵ(xn). Thus by induction we get a sequence

{xn} in A such that for all i ≥ 2, xi ̸∈ Sϵ(x1)∪Sϵ(x2)∪ · · · ∪Sϵ(xi−1). Let i, j ∈ N. Then,
if j > i, then xj ̸∈ Sϵ(xi) and hence ρ(xi, xj) ≥ ϵ. This shows that {xn} can not have a

Cauchy subsequence — a contradiction. ■

Definition. 2.51 A subset A of a metric space is said to be sequentially compact if each

sequence in A has a convergent subsequence with limit in A.

Theorem. 2.52 A subset A of a metric space is sequentially compact if and only if every

sequence in A has a cluster point in A.

Proof. Proof is easy.

Definition. 2.53 Let A be a subset of a metric space (X, ρ) and A be a family of open

sets of (X, ρ) covering A. Then δ > 0 is said to be a Lebesgue number of the open cover

A for A if for all B ⊂ A, ρ(B) < δ implies that there exists V ∈ A such that B ⊂ V

Theorem. 2.54 Let A be a sequentially compact subset of a metric space (X, ρ) and A

be a family of open sets covering A. Then A has a Lebesgue number.

Proof. If possible suppose that A has no Lebesgue number. Then for each positive integer

n there exists An ⊂ A such that ρ(An) <
1
n and An ̸⊂ G for all G ∈ A. By induction we

can choose a sequence {an} in A such that an ∈ An for all n ∈ N. Since A is sequentially

compact, {an} has a cluster point, say l, in A. Since A covers A, there exists G ∈ A such

that l ∈ G. G being open, we can choose ϵ > 0 such that S2ϵ(l) ⊂ G. Also we can choose

n ∈ N such that 1
n < ϵ and ρ(an, l) < ϵ. Now, let x ∈ An. Then ρ(x, an) ≤ ρ(An) <

1
n < ϵ

and hence ρ(x, l) ≤ ρ(x, an) + ρ(an, l) < ϵ + ϵ = 2ϵ. Thus x ∈ S2ϵ(l) which shows that

An ⊂ S2ϵ(l) ⊂ G — a contradiction. ■

Problem. 2.55 Prove that each sequentially compact metric space is totally bounded.

Definition. 2.56 Let A be a subset of a metric space (X, ρ). Then A is said to have

Bolzano-Weierstrass (BW) property if each infinite subset of A has a limit point in A.
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It is vacuously true that every finite set has the BW property.

Theorem. 2.57 Let (X, ρ) be a metric space, A ⊂ X. Then the followings are equivalent:

1. A is compact.

2. A has the BW property.

3. A is sequentially compact.

Proof. 1 ⇒ 2: Assume A is a compact set and B be an infinite subset of A. If possible,

suppose that B has no limit point. Then each a ∈ A is not a limit point of B. So, for

all a ∈ A there exists δ(a) > 0 such taht Sδ(a)(a) ∩ B ⊂ {a}. The family {Sδ(a)(a) :

a ∈ A} is an open cover of A and by compactness of A it has a finite subcover, i.e.,

there exist a1, a2, . . . , an ∈ A such that A ⊂ Sδ(a1)(a1) ∪ Sδ(a2)(a2) ∪ · · · ∪ Sδ(an)(an). So

B ⊂ Sδ(a1)(a1)∪Sδ(a2)(a2)∪ · · · ∪Sδ(an)(an), i.e., B ⊂ (Sδ(a1)(a1)∩B)∪ (Sδ(a2)(a2)∩B)∪
· · · ∪ (Sδ(an)(an) ∩ B) ⊂ {a1} ∪ {a2} ∪ · · · ∪ {an} = {a1, a2, . . . , an} — a contradiction as

B is an infinite set.

2 ⇒ 3: Assume that A has the BW property. Let {xn} be a sequence in A, R be the

range of {xn}, i.e., R = {xn : n ∈ N}. Two cases may arise:

Case 1: R is finite. Then there exists ξ ∈ A such that xn = ξ for infinitely many n ∈ N
and in this case ξ is a cluster poin of {xn}.

Case 2: R is infinite. Then, since A has the BW property, R has a limit point, say ξ, in

A. Clearly ξ is a cluster point of {xn}.

Hence A is sequentially compact.

3 ⇒ 1: Assume A is sequentially compact. Let G = {Gi : i ∈ I} be an open cover of

A. Since A is sequentially compact, G has a Lebesgue bumber δ > 0. Also A is totally

bounded, hence there exist a1, a2, . . . , an ∈ A such that A ⊂ S δ
3
(a1)∪S δ

3
(a2)∪· · ·∪S δ

3
(an).

Note that for all k = 1, 2, . . . , n, ρ(A ∩ S δ
3
(ak)) ≤ 2δ

3 < δ and hence there exists Gik ∈ G

such that A ∩ S δ
3
(ak) ⊂ Gik . Thus,

A = (A ∩ S δ
3
(a1)) ∪ (A ∩ S δ

3
(a2)) ∪ · · · ∪ (A ∩ S δ

3
(an))

⊂ Gi1 ∪Gi2 ∪ · · · ∪Gin .

Hence A is compact. ■

Theorem. 2.58 A subset of a metric space is compact if and only if it is complete and

totally bounded.

Proof. Let (X, ρ) be a metric space, A ⊂ X be compact. For any ϵ > 0, {Sϵ(a) : a ∈ A}
is an open cover of A and hence by compactness of A there exist a1, a2, . . . , an in A such
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that {Sϵ(ai) : 1 ≤ i ≤ n} covers A. Thus A is totally bounded. Let {an} be a Cauchy

sequence in A. Since A is compact, it is sequentially compact and hence {an} has a cluster

point. Recall that if a cauchy sequence has a cluster point then it is convergent. So {an}
is convergent and hence A is complete.

Conversely, let A be complete and totally bounded and {an} be a sequence in A. Since

A is totally bounded {an} has a Cauchy subsequence, say {ank
}, and by completenes of

A, {ank
} is convergent. Thus every sequence in A has a convergent subsequence. So, A is

sequentially compact and hence is compact. ■

Problem. 2.59 Prove that every bounded subset of R is totally bounded.

Solution: Let A ⊂ R be bounded. then there exists a, b ∈ R, a, b, such that A ⊂ [a, b].

Let ϵ > 0 be arbitrary. Let n be the smallest positive integer such taht b−a
n < ϵ

2 . Choose

δ > 0 such that δ < ϵ
2 . Let for all k = 1, 2, . . . , n, Ik = [a + (k − 1)δ, a + kδ]. Then

[a, b] ⊂ ∪n
k=1Ik, i.e., A ⊂ ∪n

k=1Ik. Also ρ(Ik) = 2δ < ϵ. Thus A is totally bounded.

Problem. 2.60 Prove that every bounded subset of Rn, where n ∈ N, is totally bounded.

Solution: Let A be a bounded subset of Rn and ϵ > 0 be a real number. For i =

1, 2, . . . , n let Ai = πi(A). Then A ⊂ A1 × A2 × · · · × An and each Ai is bounded

subset of R, and hence each Ai is totally bounded. So for each i ∈ {1, 2, . . . , n}, there
exists Ai1, Ai2, . . . , Aimi such that Ai ⊂ Ai1 ∪ Ai2 ∪ · · · ∪ Aimi and ρ(Aik) < ϵ/

√
n for all

k ∈ {1, 2, . . . ,mi}.

Now, for all (p1, p2, . . . , pn) ∈ {1, 2, . . . ,m1} × {1, 2, . . . ,m2} × · · · × {1, 2, . . . ,mn}, set

Ap1p2···pn = A1p1 ×A2p2 × · · · ×Anpn .

Then for any x, y ∈ Ap1p2···pn ,

ρ(x, y) =

√√√√ n∑
i=1

(πi(x)− πi(y))2 <

√√√√ n∑
i=1

(ϵ/
√
n)2 = ϵ

which implies that ρ(Ap1p2···pn) ≤ ϵ.

AlsoA ⊂ ∪{Ap1p2···pn : (p1, p2, . . . , pn) ∈ {1, 2, . . . ,m1}×{1, 2, . . . ,m2}×· · ·×{1, 2, . . . ,mn}.
Since this collection is finite, A is totally bouonded.

As a consequence of the above results we have the following.

Theorem. 2.61 For n ∈ N, a subset of Rn is compact if and only if it is closed and

bounded.
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Proof. Let A be a closed and bounded subset of Rn. Then A is totally bounded. Also

since a subset of Rn is is closed if and only if it is complete, it follows that A is complete.

Thus A is complete and totally bounden, i.e., A is compact.

The converse part is immediate. ■

Theorem. 2.62 (Bolzano-Weierstrass Theorem): For any integer n ≥ 1, every infinite

bounded subset of Rn has a limit point.

Proof. Let A be an infinite bounded subset of Rn. Then Ā is also bounded. Since Ā is

closed, it is compact. So Ā has the B-W property. A being an infinite subset of Ā, A has

a limit point (in Ā). ■

Theorem. 2.63 let A be a compact subset of a metric space (X, ρ) and f : A → R is a

continuous function. Then f is bounded and attains its bounds.

Proof. As f(A) is a compact subset of R, it is closed and bounded. So f is bounded.

If m = inf f(A),M = sup f(A) then m,M ∈ f(A). So there exists a, b ∈ A such that

f(a) = m, f(b) = M . Hence f attains its bounds. ■

2.4 Contraction Map and Banach’s Contraction Principle

Definition. 2.64 Let (X, ρ) be a metric space and f : X → X be a function. Then f is

said to be a contraction mapping if there exists r ∈ R, 0 ≤ r < 1 such that

ρ(f(x), f(y)) ≤ r · ρ(x, y) ∀x, y ∈ X.

It immediately follows that each contraction function satisfies Lipschitz’s condition and

hence it is a uniformly continuous function.

Definition. 2.65 Let X be a set f : X → X be a function. A point a ∈ X is said to be

a fixed point of f if f(a) = a.

Theorem. 2.66 [Banach’s contraction principle] Let f be a contraction mapping on a

complete metric space (X, ρ). Then f has a unique fixed point.

Proof. Choose x0 ∈ X arbitrarily. Define inductive a sequence {xn} in X as follows:

x1 = f(x0), x2 = f(x1), . . . xn+1 = f(xn) for all n ≥ 2.

Since f is a contraction mapping there exists r ∈ R, 0 ≤ r < 1, such that ρ(f(x), f(y)) ≤
r.ρ(x, y) for all x, y ∈ X. Let k ∈ N. Then
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ρ(xk, xk−1) = ρ(f(xk−1), f(xk−2)) ≤ r.ρ(xk−1, xk−2) ≤ r2.ρ(xk−2, xk−3)

≤ · · · ≤ rk−1.ρ(x1, x0).

Hence for m,n ∈ N,m > n,

ρ(xm, xn) ≤ ρ(xm, xm−1) + ρ(xm−1, xm−2) + · · ·+ ρ(xn+1, xn)

≤ rm−1ρ(x1, x0) + rm−2ρ(x1, x0) + · · ·+ rnρ(x1, x0)

= rn.ρ(x1, x0)[1 + r + r2 + · · ·+ rm−1−n]

= rn.ρ(x1, x0)
1− rm−n

1− r
≤ ρ(x1, x0)

rn

1− r
.

Since |r| < 1, limn→∞ rn = 0 and hence limm,n→∞ ρ(xm, xn) = 0. Thus {xn} is a Cauchy

sequence in (X, ρ). By completeness of (X, ρ) there exists y0 ∈ X such that limn→∞ xn =

y0. Since f is continuous, limn→∞ f(xn) = f(y0), i.e., limn→∞ xn+1 = f(y0) and hence

y0 = f(y0). Thus y0 is a fixed point of f .

If possible, let there be two fixed points, say y0 and y′0. Then

ρ(y0, y
′
0) = ρ(f(y0), f(y

′
0)) ≤ r.ρ(y0, y

′
0).

This is impossible, since 0 ≤ r < 1, unless y0 = y′0. Thus f has unique fixed point. ■

We conclude this note with an applications of Banach’s Contraction Principle; viz., Pi-

card’s Theorem on existance of unique solution of differential equation.

2.4.1 Picard’s Theorem

Theorem. 2.67 Let f be a real valued function defined on the rectangle R = [a1, a2] ×
[b1, b2]. Suppose that f and ∂f

∂y are continuous on R and (x0, y0) is an interior point on

R. Then the differential equation dy
dx = f(x, y) has a unique solution y = g(x) such that

y0 = g(x0).

Proof. Note that y = g(x) is a solution of dy
dx = f(x, y) for all x in a neighbourhood Nx0

of x0 satisfying y0 = g(x0) if and only if

g(x) = y0 +

∫ x

x0

f(t, g(t)) dt ∀x ∈ Nx0 .

To complete the proof it is sufficient to show that that there exists a unique g(x) satisfying

the above condition.
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Since f and ∂f
∂y are continuous on the compact set [a1, a2] × [b1, b2] there exists a real

M > 0 such that

|f(x, y)| ≤ M and

∣∣∣∣ ∂∂yf(x, y)
∣∣∣∣ ≤ M (2)

for all (x, y) ∈ [a1, a2] × [b1, b2]. Let x be an arbitrary but fixed real chosen in [a,a2] and

y1, y2 ∈ [b1, b2]. Then by Lagrange’s Mean Value Theorem there exists θ, 0 < θ < 1, such

that

f(x, y1)− f(x, y2) = (y2 − y1)
∂

∂y
f(x, y2 + θ(y1 − y2)),

Hence,

|f(x, y1)− f(x, y2)| ≤ |y1 − y2|M. (3)

Thus for a fixed x, f satisfies the Lipschitz condition with respect to the variable y.

Choose a positive real α such that Mα < 1 and [x0 − α, x0 + α]× [y0 −Mα, y0 +Mα] ⊂
[a1, a2]× [b1, b2].

Note that C([x0 − α, x0 + α]), the set of all real valued continuous functions defined on

[x0−α, x0+α], is a real vector space, moreover it is a complete normed linear space with

respect to supnorm.

Define a subset X of C([x0 − α, x0 + α]) by

g ∈ X ⇐⇒ ∥g − y0∥ ≤ Mα,

where y0 denotes the constant function defined by y0(x) = y0 for all x ∈ [x0 −α, x0 +α],

i.e., X is the closed ball SMα[y0] in C([x0 −α, x0 +α]) with centre at y0 and radius Mα.

So, X is a closed subspace of C([x0−α, x0+α]). Since C([x0−α, x0+α]) is complete and

X is a closed subspace of it, X is a complete metric space with respect to metric induced

by the norm of C([x0 − α, x0 + α]).

Now, for g ∈ X, t ∈ [x0−α, x0+α], since |g(t)−y0| < Mα, it follows that (t, g(t)) belongs

to [x0 − α, x0 + α]× [y0 −Mα, y0 +Mα]. Define a mapping T (g) : [x0 − α, x0 + α] → R
by,

T (g)(x) = y0 +

∫ x

x0

f(t, g(t)) dt, ∀t ∈ [x0 − α, x0 + α].

Clearly, T (g) ∈ C([x0 − α, x0 + α]). Also for all x ∈ [x0 − α, x0 + α],

|T (g)(x)− y0| =

∣∣∣∣∫ x

x0

f(t, g(t)) dt

∣∣∣∣ ≤
∫ x

x0

|f(t, g(t))| dt ≤ Mα.
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So, sup{|T (g)(x)− y0| : x ∈ [x0 − α, x0 + α]} ≤ Mα and hence ∥T (g)− y0∥ ≤ Mα. Thus

T (g) ∈ X, i.e., T is a mapping from X to X.

Let g1, g2 ∈ X and x ∈ [x0 − α, x0 + α]. Then

|T (g1)(x)− T (g2)(x)| =

∣∣∣∣∫ x

x0

[f(t, g1(t))− f(t, g2(t))] dt

∣∣∣∣
≤ M |g1(t)− g2(t)| · |x− x0| (by 3)

≤ M |g1(t)− g2(t)|α.

Thus ∥T (g1)− T (g2)∥ ≤ Mα∥g1 − g2∥.

Since Mα < 1 it follows that T : X → X is a contraction mapping. Since X is a complete

metric space there exists a unique g ∈ X such that T (g) = g, i.e., T (g)(x) = g(x) for all

x in [x0 − α, x0 + α]. Hence

g(x) = y0 +

∫ x

x0

f(t, g(t)) dt ∀t ∈ [x0 − α, x0 + α].

This completes the proof. ■


