Study Material on Group Theory - II

Department of Mathematics, P. R. Thakur Govt. College MTMACOR12T: (Semester - 5)

University Syllabus

- Unit 1: Automorphism, inner automorphism, automorphism groups. Automorphism groups of finite and infinite cyclic groups, applications of factor groups to automorphism groups, Characteristic subgroups, Commutator subgroup and its properties.
- Unit 2 : Properties of external direct products, the group of units modulo n as an external direct product, internal direct products, Fundamental Theorem of finite abelian groups.
- Unit 3 : Group actions, stabilizers and kernels, permutation representation associated with a given group action. Applications of group actions. Generalized Cayley's theorem. Index theorem.
- Unit 4 : Groups acting on themselves by conjugation, class equation and consequences, conjugacy in S_n , p-groups, Sylow's theorems and consequences, Cauchy's theorem, Simplicity of A_n for $n \geq 5$, non-simplicity tests.

0 Review of the previous study

In this section we recall some definitions state some results without proof from what we have already studied.

DEFINITION. 0.1 Let (G, \cdot) and (G', \ast) be two groups, a function $\phi : G \to G'$ is called a group homomorphism if for all $a, b \in G$, $\phi(a \cdot b) = \phi(a) * \phi(b)$.

If $\phi: G \to G'$ is an injective group homorphism then it is called a *monomorphism*. If ϕ is bijective it is called an *isomorphism* and in this case the groups G and G' are called isomorphic.

When we are not so formal and do not mention the group operations we simply write it as $\phi(ab) = \phi(a)\phi(b)$. However we always remember the fact that in left hand side ab means $a \cdot b$, i.e., the operation in group (G, \cdot) and in right hand side

 $\phi(a)\phi(b)$ means $\phi(a)*\phi(b)$, i.e., the operation in the group $(G',*)$. Henceforth by a homomorphism we shall mean a group homomorphism.

THEOREM. 0.2 Let $\phi: G \to G'$ be a homomorphism. Then

- 1. If e, e' are the identity elements of G and G' respectively then $\phi(e) = e'$.
- 2. For any $a \in G$, $\phi(a^{-1}) = (\phi(a))^{-1}$.
- 3. If H is a subgroup of G then $H' = \phi(H) = {\phi(h) : h \in H}$ is a subgroup of G^{\prime} .
- 4. If K' is a subgroup of G' then $K = \phi^{-1}(K') = \{h \in G : \phi(h) \in K'\}$ is a subgroup of G.

DEFINITION. 0.3 A subgroup H of a group G is called a normal subgroup if for all $g \in G$ for all $h \in H$, $ghg^{-1} \in H$. In symbol it is written as $gHg^{-1} \subset H$ for all $g \in G$, where $gHg^{-1} = \{ghg^{-1} : h \in H\}.$

When G is an abelian group then every subgroup of G is a normal subgroup.

DEFINITION. 0.4 Let G be a group and H be a subgroup of G. For any $a \in G$ the set $aH = \{ah : h \in H\}$ is called a *left coset* of H. Similarly the set $Ha = \{ha : h \in H\}$ is a right coset of H.

THEOREM. 0.5 If H is a normal subgroup of G then for any $a \in G$, $aH = Ha$, i.e., the left coset and the right coset of a normal group are the same.

In view of the above theorem we shall not distinguish between the left cosets and right cosets of a normal subgroup and say only cosets.

THEOREM. 0.6 If H is a normal subgroup of a group G then the set of all cosets of H, denoted by G/H , form a group under the operation $(aH)(bH) = abH$ for all $aH, bH \in G/H$. This group is called the factor group or quotient group.

THEOREM. 0.7 If G, G' are groups and $\phi : G \to G'$ is a homomorphism then the kernel of ϕ defined by ker $\phi = \{x \in G : \phi(x) = e'\}$, where e' is the identity element of G′ , is a normal subgroup of G.

THEOREM. 0.8 If $\phi : G \to G'$ is a homomorphism of groups then $G/\text{ker }\phi$ is a group and is isomorphic to $\phi(G)$.

In the above theorem if ϕ is onto G' then $G/\ker \phi$ is isomorphic to G'. If ker $\phi = H$, for $a \in G$, $aH \mapsto \phi(a)$ is the isomorphism of G/H onto G' .

0.1 Exercise

- 1. For $n \in \mathbb{N}$ show that $(\mathbb{Z}_n, +)$ is a commutative group, where the addition is modulo n.
- 2. Write down the composition table of $(\mathbb{Z}_2, +)$.
- 3. Show that S_n , the set of all permutations on the set $\{1, 2, \ldots, n\}$ is a group with respect to composition of functions. Is it commutative? support your answer.
- 4. Verify which of the following functions are homomorphisms and find the kernels of each homomorphism:
	- (a) $\phi : \mathbb{Z}_6 \to \mathbb{Z}_2$, where $\phi(n) =$ the remainder when n is divided by 2.
	- (b) $\phi : \mathbb{Z}_9 \to \mathbb{Z}_2$, where $\phi(n) =$ the remainder when n is divided by 2.
	- (c) ϕ : $S_3 \rightarrow \mathbb{Z}_2$ defined by $\phi(\sigma) = 0$ if σ is an even permutation, and $\phi(\sigma) = 1$ if σ is an odd permutation.
	- (d) $\phi: M_n \to \mathbb{R}$ defined by $\phi(A) = |A|$, where M_n denotes the additive group of all $n \times n$ real matrices and for $A \in M_n$, |A| denotes the determinant of A.
- 5. Let H be a normal subgroup of a group G , a relation ρ_H on G is defined by $a\rho_H b$ iff $a^{-1}b \in H$. Show that ρ_H is an equivalence relation on G and identify the equivalence classes.
- 6. Let $p > 1$ be an integer, define $\phi_p : \mathbb{Z} \to \mathbb{Z}_p$ by $\phi_p(n) =$ remainder when n is divided by p. Verify that ϕ_p is a homomorphism, find the kernel ker ϕ_p and find the quotient group $\mathbb{Z}/\ker \phi_p$.

1 Automorphism

1.1 Definition and elementary properties

DEFINITION. 1.1 An isomorphism from a group G onto itself is called an automorphism on G. The set of all automorphisms on a group G is denoted by $Aut(G)$.

Let G be a group and S_G denote the set of all bijections from G to G, If G is finite then S_G is nothing but the permutation group of the set G. Thus $Aut(G)$ is a subset of S_G . We know that S_G is a group under composition of mappings. Also composition of two homomorphisms is also a homomorphism and inverse of an isomorphism is an isomorphism, it follows that $Aut(G)$ is a group under composition of mappings. Hence the following result follows immediately.

THEOREM. 1.2 Aut (G) , the set of all automorphisms of a group G is a group under composition of mappings and is a subgroup of S_G .

DEFINITION. 1.3 The group $Aut(G)$ is called the *automorphism group* of G, where G is a group.

THEOREM. 1.4 Let G be a group. For each $g \in G$ define $i_g : G \to G$ by

$$
i_g(x) = gxg^{-1} \text{ for all } x \in G.
$$

Then i_q is an automorphism.

PROOF. First, to show that i_g is a homomorphism choose $x_1, x_2 \in G$. Then $i_g(x_1x_2) = g(x_1x_2)g^{-1} = g(x_1e^{f})g^{-1} = (gx_1)(g^{-1}g)(x_2g^{-1}) = (gx_1g^{-1})(gx_2g^{-1}) =$ $i_q(x_1)ig(x_2)$. Hence i_q is a homomorphism.

To show that i_g is one-one, take $x_1, x_2 \in G$ such that $i_g(x_1) = i_g(x_2)$. Then $gx_1g^{-1} =$ gx_2g^{-1} , by cancellation law we have $x_1 = x_2$.

Finally, for $y \in G$ take $x = g^{-1}yg$. Then $i_g(x) = gxg^{-1} = g(g^{-1}yg)g^{-1} = g^{-1}$ $(gg^{-1})y(gg^{-1}) = y$. This i_g is onto. Hence $i_g : G \to G$ is an isomorphism, i.e., i_q is an automorphism on G.

DEFINITION. 1.5 Let G be a group, for $g \in G$ the automorphism i_g is called an *inner automorphism*. The set of all inner automorphisms of G is denoted by $\text{Inn}(G)$. THEOREM. 1.6 For a group G, $\text{Inn}(G)$ is a subgroup of $\text{Aut}(G)$.

PROOF. Take $i_a, i_h \in \text{Inn}(G)$ where $g, h \in G$. Then for $x \in G$, $i_a \circ i_h(x) = i_a(i_h(x)) =$ $i_g(hxh^{-1}) = g(hxh^{-1})g^{-1} = (gh)x(h^{-1}g^{-1}) = (gh)x(gh)^{-1} = i_{gh}(x)$. Since this is true for all $x \in G$ it follows that $i_g \circ i_h = i_{gh}$ and since $i_{gh} \in \text{Inn}(G)$ it follows that $i_q \circ i_h \in \text{Inn}(G)$. Thus $\text{Inn}(G)$ is closed under composition of mappings.

Also for $i_g \in \text{Inn}(G)$ and for $x \in G$, $i_g(x) = y \Rightarrow gxg^{-1} = y \Rightarrow x = g^{-1}yg \Rightarrow x = g^{-1}(g)$ $i_{g^{-1}}(y)$. Hence $i_g^{-1} = i_{g^{-1}}$ and hence $i_g^{-1} \in \text{Inn}(G)$.

Thus $\text{Inn}(G)$ is a subgroup of $\text{Aut}(G)$.

We have already studied centralizer and center of a group in our previous classes. However we recall the definition and a few elementary properties without proof.

DEFINITION. 1.7 Let G be a group and A be a non-empty subset of G. Then the set ${g \in G : gag^{-1} = a \,\forall a \in A}$ is called the *centralizer* of the set A and is denoted by $C_G(A)$. When $A = \{a\}$ is a singleton set, instead of $C_G(\{a\})$, we write its centralizer as $C_G(a)$, or simply by $C(a)$ when no confusion about G may arise.

It can be noted that for $a \in A$ and $g \in G$, $gag^{-1} = a$ is true if and only if $ga = ag$. Thus the centralizer of a set A is actually those elements of G which commute with every member of A.

THEOREM. 1.8 The centralizer of a subset of a group is a subgroup of that group.

DEFINITION. 1.9 The center of a group G is the set of all those members of G which commute with every member of G and is denoted by $Z(G)$. Thus $Z(G) = \{x \in G :$ $xg = gx \,\forall g \in G$.

It can be observed that $Z(G)$ is nothing but the centralizer of the whole group G, i.e., $Z(G) = C_G(G)$. Since centralizer of a subset of G is a subgroup of G as a particular case we can conclude immediately that $Z(G)$ is a subgroup of G. More precisely, one can prove that

THEOREM. 1.10 For a group G , $Z(G)$ is a normal subgroup of G .

THEOREM. 1.11 Let G be a group, the function $\phi: G \to \text{Aut}(G)$, defined by $\phi(q)$ = i_q for all $g \in G$, is a homomorphism. The image $Im(\phi) = Im(G)$ and the kernel is $\ker \phi = Z(G)$, the center of G.

PROOF. For $g, h \in G$, $\phi(gh) = i_{gh} = i_g \circ i_h$ (already verified) = $\phi(g) \circ \phi(h)$. Hence ϕ is a homomorphism of G into Aut(G). Since for $g \in G$, $\phi(g) = i_g$, is an inner automorphism, $\phi(G) \subset \text{Inn}(G)$. To show that $Im(\phi) = \text{Inn}(G)$ take $i_g \in \text{Inn}(G)$, since $\phi(g) = i_g$ it follows that ϕ is onto Inn(G). Thus $Im(\phi) = Im(G)$.

For the last part, let $g \in \text{ker } \phi$. Then $\phi(g) = i$, the identity mapping of G which is the identity element of $Aut(G)$. Then

$$
i_g(x) = i(x) \text{ for all } x \in G
$$

\n
$$
\Rightarrow gxg^{-1} = x \text{ for all } x \in G
$$

\n
$$
\Rightarrow gx = xg \text{ for all } x \in G
$$

\n
$$
\Rightarrow g \in Z(G).
$$

Thus ker $\phi \subset Z(G)$. On the other hand

$$
g \in Z(G) \Rightarrow gx = xg \text{ for all } x \in G
$$

$$
\Rightarrow gxg^{-1} = x \text{ for all } x \in G
$$

$$
\Rightarrow i_g(x) = x \text{ for all } x \in G
$$

$$
\Rightarrow i_g = i \Rightarrow \phi(g) = i,
$$

i.e., $g \in \text{ker } \phi$. Thus $Z(G) \subset \text{ker } \phi$. Hence $\text{ker } \phi = Z(G)$.

THEOREM. 1.12 For a group G , $G/Z(G) \simeq \text{Inn}(G)$.

Proof. This result follows from the previous theorem and the First Isomorphism Theorem.

We know there is only one (up to isomorphism) infinite cyclic group $(\mathbb{Z}, +)$ and the only non-zero homomorphisms from $\mathbb Z$ to $\mathbb Z$ are of the type $a \mapsto na$ where $n \in \mathbb Z$. The map $a \mapsto na$ is onto if and only if $n = 1$, i.e., the identity map. Hence the only automorphism from Z to Z is the identity map, in other words we have $Aut(\mathbb{Z}) = \{i\},\$ where *i* denotes the identity map.

We now try to find $\text{Aut}(G)$ where G is a finite cyclic group. Recall that $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$ is the additive group of integers modulo *n* whose elements are $(0), (1), (2), \ldots, (n-1)$. Note that \mathbb{Z}_n is also a commutative ring, known as residue class ring modulo n. An element (k) of \mathbb{Z}_n is called an unit if there exists $(l) \in \mathbb{Z}_n$ such that $(k)(l) = (1)$, i.e., if (k) has a multiplicative inverse in \mathbb{Z}_n . Note that the element (k) is a unit if and only if $gcd(k, n) = 1$ and hence the number of units of \mathbb{Z}_n is $\phi(n)$. The set of all the units of \mathbb{Z}_n is denoted by U_n . U_n forms an abelian group under multiplication (modulo *n*) and is denoted by $(\mathbb{Z}/n\mathbb{Z})^{\times}$. However we shall write it as (U_n, \cdot) .

THEOREM. 1.13 If G is a cyclic group of order n then its automorphism group Aut(G) is isomorphic to (U_n, \cdot) .

PROOF. Let x be a generator of G, i.e., $G = \langle x \rangle$. Since $|G| = n$ we have $|x| = n$ and $G = \{1, x, x^2, \ldots, x^{n-1}\}.$ If $f \in Aut(G)$ then there exists $k \in \{0, 1, \ldots, n-1\}$ such that $f(x) = x^k$. Note that this k uniquely determines f and hence we can write $f = f_k$. Now f_k being an automorphism and x being a generator of G we have $f_k(x) = x^k$ is also a generator of G, and hence x and x^k have the same order n. This is true if and only if $gcd(n, k) = 1$, i.e., if and only if $(k) \in U_n$.

Define a map $\Psi : \text{Aut}(G) \to U_n$ as follows: $\Psi(f_k) = (k)$ for all $f_k \in \text{Aut}(G)$. First note that Ψ is onto, since for each $(k) \in U_n$, $\Psi(f_k) = (k)$. To prove that Ψ is a homomorphism, take $f_k, f_l \in \text{Aut}(G)$. Then $(f_k \circ f_l)(x) = f_k(f_l(x)) = f_k(x^l)$ $(x^{l})^{k} = x^{kl} = x^{m} = f_{m}(x)$, where $kl \equiv m \pmod{n}$. Hence $\Psi(f_{k} \circ f_{l}) = (m) = (kl)$ $(k)(l) = \Psi(f_k)\Psi(f_l)$. Finally, to check that Ψ is injective take $f_k, f_l \in Aut(G)$. Then $\Psi(f_k) = \Psi(f_l) \iff (k) = (l)$. Hence $\Psi : \text{Aut}(G) \to (U_n, \cdot)$ is an isomorphism.

1.2 Characteristic subgroups and Commutator Subgroups

A subgroup N of a group G is a normal subgroup if $qNq^{-1} \subset N$ for all $q \in G$. As the inequality $gNg^{-1} \subset N$ for all $g \in G$ implies the reverse inequality $N \subset gNg^{-1} = N$ for all $g \in G$, it follows that N is a normal subgroup if and only if $gNg^{-1} = N$ for all $g \in G$. Considering the inner automorphism i_g for $g \in G$ we can see that a subgroup N of G is a normal subgroup if and only if $i_q(N) \subset N$ for all $q \in G$, where $i_q(N) = \{i_q(x) : x \in N\}$. Now replacing inner automorphism with any automorphism we get a class of subgroups stronger than normal subgroups.

DEFINITION. 1.14 A subgroup H of a group G is called a *Characteristic subgroup* of G or Characteristic in G if $\phi(H) \subset H$ for every automorphism ϕ on G. If H is a Characteristic subgroup of G it is denoted by H char G .

THEOREM. 1.15 A Characteristic subgroup is always a normal subgroup.

PROOF. This immediate follows as i_g is an automorphism for all $g \in G$.

Recall that $N \triangleleft G$ means N is a normal subgroup of G. The following example shows that if $N' \triangleleft N$ and $N \triangleleft G$ then it does not follows that $N' \triangleleft G$, i.e., transitivity of normality does not hold.

EXAMPLE. 1.16 Let $G = D_4$ the dihedral group of all the symmetric transformations of a square generated by the rotation r by $90°$ about its centre and flip s about the vertical line through the center. The elements of D_4 are $1, r, r^2, r^3, s, rs, r^2s, r^3s$. Let $N = \{1, s, r^2, r^2s\}$ and $N' = \{1, s\}$. Note that $N' < N < G$. Also, since $\frac{|G|}{|N|} = 2$ and $\frac{|N|}{|N'|} = 2$ it follows that $N' \lhd N$ and $N \lhd G$. But N' is not a normal subgroup of G, since for $r \in G$, $s \in N'$, $rsr^{-1} \notin N'$.

The transitivity of characteristic subgroups hold.

THEOREM. 1.17 If G is a group, H, K are subgroups of G such that K char H and H char G. Then K char G.

PROOF. Let $\phi \in \text{Aut}(G)$. Then, since H char G, we have $\phi(H) = H$ and hence $\phi|_H$, the restriction of ϕ on H, is an automorphism of H. Since K char H, $\phi_H(K) = K$. But $\phi_H(K) = \phi(K)$ and hence $\phi(K) = K$. Since ϕ has been chosen arbitrarily in Aut(G) it follows that K char G.

THEOREM. 1.18 For a group G the center $Z(G)$ of G is Characteristic in G.

PROOF. Note that $Z(G) = \{x \in G : xg = gx \,\forall g \in G\}$. Let $\phi \in \text{Aut}(G)$, then we have to show that $\phi(Z(G)) \subset Z(G)$. Let us choose $x \in Z(G)$. For $q \in G$ since ϕ is an automorphism on G there exists $h \in G$ such that $g = \phi(h)$. Then

$$
\begin{array}{rcl}\n\phi(x)g & = & \phi(x)\phi(h) = & \phi(xh) \\
& = & \phi(hx) \quad \text{(since } x \in Z(G)) \\
& = & \phi(h)\phi(x) = & g\phi(x).\n\end{array}
$$

This shows that $\phi(x) \in Z(G)$. Since x has been chosen arbitrarily in $Z(G)$ it follows that $\phi(Z(G)) \subset Z(G)$. ϕ has been chosen arbitrarily in Aut(G), hence $\phi(Z(G)) \subset Z(G)$ for all $\phi \in \text{Aut}(G)$. Thus $Z(G)$ char G.

The following corollary has already been stated without proof (Theorem 1.10).

COROLLARY. 1.19 $Z(G)$ is a normal subgroup of G.

DEFINITION. 1.20 Let G be a group. For $x, y \in G$ the element $x^{-1}y^{-1}xy$ is called *commutator* of the elements x and y and is denoted by [x, y]. An element $z \in G$ is called a *commutator* of G if there exists $x, y \in G$ such that $z = [x, y]$. The group generated by the set of all the commutators of G is called the *commutator subgroup* of G.

It immediately follows that for $x, y \in G$, (i) $[x, y]^{-1} = [y, x]$ and (ii) if $f : G \to H$ is a homomorphism then $f([x, y]) = [f(x), f(y)].$

THEOREM. 1.21 A group is G abelian if and only if its commutator group is $\{e\}$, the trivial subgroup.

PROOF. This immediately follows since $[x, y] = e$ for all $x, y \in G$ if and only if $x^{-1}y^{-1}xy = e$ for all $x, y \in G$ if and only if $xy = yx$ for all $x, y \in G$.

THEOREM. 1.22 If $\phi \in \text{Aut}(G)$ then for $x, y \in G$, $\phi([x, y]) = [\phi(x), \phi(y)]$.

PROOF. Since ϕ is a homomorphism,

$$
\begin{aligned}\n\phi([x,y]) &= \phi(x^{-1}y^{-1}xy) = \phi(x^{-1})\phi(y^{-1})\phi(x)\phi(y) \\
&= (\phi(x))^{-1}(\phi(y))^{-1}\phi(x)\phi(y) = [\phi(x), \phi(y)].\n\end{aligned}
$$

THEOREM. 1.23 The commutator subgroup of G is a characteristic subgroup of G

PROOF. Let H be the commutator subgroup of G. Choose $\phi \in Aut(G)$, to show that $\phi(H) \subset H$. Since H is generated by all the commutators of G it is sufficient to show that for any commutator $x^{-1}y^{-1}xy$ of $G \phi(x^{-1}y^{-1}xy)$ is also a commutator. Since

$$
\phi(x^{-1}y^{-1}xy) = \phi(x^{-1})\phi(y^{-1})\phi(x)\phi(y)
$$

it follows that $\phi(x^{-1}y^{-1}xy)$ is the commutator of $\phi(x)$ and $\phi(y)$ and hence H is a characteristic subgroup of G .

THEOREM. 1.24 For a group G if H is the commutator subgroup of G then the quotient group G/H is abelian.

PROOF. Since H char G, H is a normal subgroup of G and hence the group G/H is defined. Let us take two left cosets xH, yH in G/H . Then

$$
xHyH = xyH = xy(y^{-1}x^{-1}yx)H \text{ (since } y^{-1}x^{-1}yx \in H)
$$

= $(xyy^{-1}x^{-1})yxH = yxH = yHxH.$

Hence G/H is abelian.

THEOREM. 1.25 Let $\phi: G \to G'$ be a homomorphism where the group G' is abelian. Then the commutator subgroup of G is contained in ker ϕ .

PROOF. Since the commutator subgroup H is generated by all the commutators of G it is sufficient to show that all the commutators of G belong to ker ϕ . Let us take

$$
\phi(x)\phi(y) = \phi(y)\phi(x)
$$

\n
$$
\Rightarrow \phi(x)^{-1}\phi(y)^{-1}\phi(x)\phi(y) = e', \text{ where } e' \text{ is the identity element of } g'
$$

\n
$$
\Rightarrow \phi(x^{-1}y^{-1}xy) = e'
$$

\n
$$
\Rightarrow x^{-1}y^{-1}xy \in \text{ker }\phi.
$$

Hence $H \subset \ker \phi$.

THEOREM. 1.26 If N is a normal subgroup of a group G then G/N is abelian if and only if the commutator subgroup of G is a normal subgroup of N .

PROOF. Let H denote the commutator subgroup of G. Assume that G/N is abelian. Let $\phi: G \to G/N$ be the natural homomorphism of G onto G/N . Since G/N is abelian, $H \subset \text{ker } \phi$. But $\text{ker } \phi = N$ and hence H is a subgroup of N. Since H is a characteristic subgroup it is a normal subgroup of N.

Conversely, assume that H is a normal subgroup of N, to show that G/N is abelian. Take $xN, yN \in G/N$. Then

$$
xNyN = xyN = xy(y^{-1}x^{-1}yx)N \text{ (since } y^{-1}x^{-1}yx \in H \subset N)
$$

$$
= (xyy^{-1}x^{-1})yxN = yxN = yNxN.
$$

Thus G/N is an abelian group.

1.3 Exercises

- 1. Let G be an infinite cyclic group. Prove that the group of automorphism of G is isomorphic to the additive group \mathbb{Z}_2 of integers modulo 2.
- 2. Find (i) $\text{Aut}(\mathbb{Z}_{15})$ (ii) $\text{Aut}(\mathbb{Z}_{13})$ (iii) $\text{Aut}(\mathbb{Z}_{16})$ and (iv) $\text{Aut}(\mathbb{Z}_{30})$.
- 3. Write down the composition table of D_4 and find $Z(D_4)$ and the commutator subgroup of D_4 .
- 4. Write down the composition table of S_3 and find $Z(S_3)$ and the commutator subgroup of S_3 .
- 5. Let H be a subgroup of a group G. Prove that $H \subset G'$ if and only if H is a normal subgroup of G and the factor group G/H is Abelian, where G' denotes the commutator subgroup of G.

2 Direct product of groups

2.1 External Direct Product

DEFINITION. 2.1 Let G_1, G_2, \ldots, G_n be n groups. A binary operation \cdot can be introduced on the product set $G_1 \times G_2 \times \cdots \times G_n$ by the following rule: for $(g_1, g_2, \ldots, g_n), (g'_1, g'_2, \ldots, g'_n) \in G_1 \times G_2 \times \cdots \times G_n,$

$$
(g_1, g_2, \ldots, g_n) \cdot (g'_1, g'_2, \ldots, g'_n) = (g_1g'_1, g_2g'_2, \ldots, g_ng'_n),
$$

where for $1 \leq i \leq n$, $g_i g'_i$ is the composition in the respective group G_i .

With respect to this binary operation the product set $G_1 \times G_2 \times \cdots \times G_n$ becomes a group, called the *external direct product* of the groups G_1, G_2, \ldots, G_n and is denoted by $G_1 \oplus G_2 \oplus \cdots \oplus G_n$.

It immediately follows that if e_i is the identity element of the group G_i , $1 \leq i \leq n$, then (e_1, e_2, \ldots, e_n) is the identity element of the group $G_1 \oplus G_2 \oplus \cdots \oplus G_n$.

EXAMPLE. 2.2 1. Let $G_1 = \mathbb{Z}_2$ and $G_2 = \mathbb{Z}_3$, the residue classes of $\mathbb Z$ modulo 2 and 3 respectively. Then $\mathbb{Z}_2 \oplus \mathbb{Z}_3 = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}.$ The composition table is as follows:

Note that the composition for the first component is addition modulo 2 whereas the composition for the second component is addition modulo 3.

2. Recall that for $n \in \mathbb{N}$ the group of units of \mathbb{Z}_n is the set $U_n = \{ [k] \in \mathbb{Z}_n : 1 \leq$ $k \leq n, \gcd(k, n) = 1$ where is composition is multiplication modulo n. For example as $\mathbb{Z}_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}, U_8 = \{1, 3, 5, 7\}.$ Similarly $U_6 = \{1, 5\}.$ Then

$$
U_6 \oplus U_8 = \{(1, 1), (1, 3), (1, 5), (1, 7), (5, 1), (5, 3), (5, 5), (5, 7)\}
$$

The composition for the first component is multiplication modulo 6 and for the second component is multiplication modulo 8. For example $(5,3) \cdot (5,7) =$

 $(25, 21) = (1, 5)$. Similarly $(1, 7) \cdot (5, 7) = (5, 49) = (5, 1)$. The composition table is given as follows:

		\cdot (1,1) (1,3) (1,5) (1,7) (5,1) (5,3) (5,5) (5,7)		
		$(1,1)$ $(1,1)$ $(1,3)$ $(1,5)$ $(1,7)$ $(5,1)$ $(5,3)$ $(5,5)$ $(5,7)$		
		$(1,3)$ $(1,3)$ $(1,1)$ $(1,7)$ $(1,5)$ $(5,3)$ $(5,1)$ $(5,7)$ $(5,5)$		
		$(1,5) (1,5) (1,7) (1,1) (1,3) (5,5) (5,7) (5,1) (5,3)$		
		$(1,7) (1,7) (1,5) (1,3) (1,1) (5,7) (5,5) (5,3) (5,1)$		
		$(5,1)$ $(5,1)$ $(5,3)$ $(5,5)$ $(5,7)$ $(1,1)$ $(1,3)$ $(1,5)$ $(1,7)$		
		$(5,3) (5,3) (5,1) (5,7) (5,5) (1,3) (1,1) (1,7) (1,5)$		
		$(5,5) (5,5) (5,7) (5,1) (5,3) (1,5) (1,7) (1,1) (1,3)$		
		$(5,7) (5,7) (5,5) (5,3) (5,1) (1,7) (1,5) (1,3) (1,1)$		

- 3. In a similar manner $U_8 \oplus U_{12} = \{(1,1), (1,5), (1,7), (1,11), (3,1), (3,5), (3,7),\}$ $(3, 11), (5, 1), (5, 5), (5, 7), (5, 11), (7, 1), (7, 5), (7, 7), (7, 11)\}.$ The composition for the first component is multiplication modulo 8 and for the second component is multiplication modulo 12. For example $(3, 5) \cdot (5, 7) = (15, 35) = (7, 11)$. Similarly, $(3, 7) \cdot (7, 11) = (21, 77) = (5, 5).$
- 4. We know $\mathbb R$ is an additive group. The group $\mathbb R \oplus \mathbb R$ is the Cartesian product \mathbb{R}^2 with addition is defined as $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2), (0, 0)$ being the identity element. Similarly taking n copies of $\mathbb R$ we get the additive group \mathbb{R}^n , where addition is component wise.

THEOREM. 2.3 For n finite groups G_1, G_2, \ldots, G_n and for any $(a_1, a_2, \ldots, a_n) \in$ $G_1 \oplus G_2 \oplus \cdots \oplus G_n$, the order $o(a_1, a_2, \ldots, a_n) = \text{lcm}(o(a_1), o(a_2), \ldots, o(a_n)).$

PROOF. Let $o(a_i) = k_i, 1 \le i \le n, m = \text{lcm}(k_1, k_2, \ldots, k_n)$ and $k = o(a_1, a_2, \ldots, a_n)$. Then m is a multiple of each k_i . Now $(a_1, a_2, \ldots, a_n)^m = (a_1^m, a_2^m, \ldots, a_n^m)$ (e_1, e_2, \ldots, e_n) , where e_i is the identity element of G_i . So m is a multiple of k, i.e., k divides m.

On the other hand, $(a_1, a_2, \ldots, a_n)^k = (e_1, e_2, \ldots, e_n)$ shows that $a_i^k = e_i$ for $i =$ $1, 2, \ldots, n$, hence k must be a multiple of k_i for each $i = 1, 2, \ldots, n$. Thus m divides k. Hence $k = m$, i.e., $o(a_1, a_2, \ldots, a_n) = \text{lcm}(o(a_1), o(a_2), \ldots, o(a_n)).$

It can be observed that the group $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ is a group of order 6, The group \mathbb{Z}_6 is also a group of order 6 which is cyclic. The group $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ is generated by $(1,1)$, for $2(1, 1) = (2, 2) = (0, 2), 3(1, 1) = (3, 3) = (1, 0), 4(1, 1) = (4, 4) = (0, 1), 5(1, 1) =$ $(5, 5) = (1, 2)$ and $6(1, 1) = (6, 6) = (0, 0)$. Thus $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ is also a cyclic group of order 6. Since cyclic groups of same order are isomorphic, \mathbb{Z}_6 and $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ are isomorphic.

The group $\mathbb{Z}_2 \oplus \mathbb{Z}_2 = \{(0,0), (0,1), (1,0), (1,1)\}\$ is a group of order 4. Note that order of each element of this group is 2 and hence it can not be a cyclic group.

The following theorem answers the question when the external product of two cyclic groups is also a cyclic group.

THEOREM. 2.4 If G and H are finite cyclic groups then $G \oplus H$ is cyclic if and only if $o(G)$ and $o(H)$ are prime to each other.

PROOF. Let G, H be cyclic groups with $o(G) = m$, $o(H) = n$. Then $o(G \oplus H) = mn$. Assume that $gcd(m, n) = 1$, $G = \langle a \rangle$ and $H = \langle b \rangle$. Then $o(a) = m$ and $o(b) = n$ and hence $o(a, b) = \text{lcm}(o(a), o(b)) = \text{lcm}(m, n) = mn$. This shows that (a, b) is a generator of $G \oplus H$ and hence $G \oplus H$ is a cyclic group.

Conversely, assume that $G \oplus H$ is a cyclic group. Let (a, b) be a generator of $G \oplus H$. Note that $a^m = e_1$ and $b^n = e_2$, where e_1, e_2 are the identity elements of G and H respectively. If $d = \gcd(m, n)$ then d divides both m and n. Now $(a, b)^{mn/d} = (a^{mn/d}, b^{mn/d}) = ((a^m)^{n/d}, (b^n)^{m/d}) = (e_1^{n/d})$ $n/d, e_2^{m/d}$ $2^{m/a}$) = (e_1, e_2) . This shows that $o(a, b) \leq \frac{mn}{d}$ $\frac{dm}{d}$, but (a, b) being a generator of $G \oplus H$ we must have $o(a, b) = mn$. Thus $d = 1$, i.e., m, n are prime to each other.

COROLLARY. 2.5 For $m, n \in \mathbb{N}$, $\mathbb{Z}_m \oplus \mathbb{Z}_n \approx \mathbb{Z}_{mn}$ if and only if m and n are prime to each other.

This result immediately follows from the fact that \mathbb{Z}_m , \mathbb{Z}_n and \mathbb{Z}_{mn} are cyclic groups of order m, n and mn respectively. The next result is extension of the above theorem to n number of cyclic groups.

COROLLARY. 2.6 If G_1, G_2, \ldots, G_n are finite cyclic groups of order k_1, k_2, \ldots, k_n respectively, then the external direct product $G_1 \oplus G_2 \oplus \cdots \oplus G_n$ is cyclic if and only if $\gcd(k_i, k_j) = 1$ for $k_i \neq k_j, 1 \leq i, j \leq n$.

When applying this result to the groups \mathbb{Z}_m , $m \in \mathbb{N}$ we have,

COROLLARY. 2.7 For $k_1, k_2, \ldots, k_n \in \mathbb{N}, \ \mathbb{Z}_{k_1} \oplus \mathbb{Z}_{k_2} \oplus \cdots \oplus \mathbb{Z}_{k_n} \approx \mathbb{Z}_{k_1 k_2 \ldots k_n}$ if and only if $gcd(k_i, k_j) = 1$ for $k_i \neq k_j, 1 \leq i, j \leq n$.

2.2 Group of units of \mathbb{Z}_n

Recall that an element x in a ring R with unity is called an *unit* if it has the multiplicative inverse, i.e., if there exists $y \in R$ such that $xy = yx = 1$, where 1

is the unity element of R. The set of all the units of the ring \mathbb{Z}_n , where $n \in \mathbb{N}$, is denoted by U_n . Evidently U_n is a group under multiplication modulo n, called the group of units modulo n.

DEFINITION. 2.8 For $n \in \mathbb{N}$ if k is a divisor of n then $U_k(n)$ is defined by

$$
U_k(n) = \{ x \in U_n : x \equiv 1 \pmod{k} \}.
$$

For example, note that $U_{21} = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}$. Then $U_3(21)$ ${1, 4, 10, 13, 16, 19}$ and $U_7(21) = {1, 8}.$

THEOREM. 2.9 If k in a divisor of n then $U_k(N)$ is a subgroup of U_n .

PROOF. If $x, y \in U_k(n)$ then $x \equiv 1 \pmod{k}$ and $y \equiv 1 \pmod{k}$ and hence $xy \equiv$ $1(\text{mod } k)$ showing that $xy \in U_k(n)$. Also if $x \equiv 1(\text{mod } k)$ then $k|(x-1)$. If y is the inverse of x in U_n then $xy \equiv 1 \pmod{n}$, i.e., $n|(xy-1)$. Since $k|n$ we have $k|(xy-1)$ and hence $k|(xy-1)-(x-1)$, i.e., $k|x(y-1)$. Since k $\forall x$, we have $k|y-1$, i.e., $y \equiv 1 \pmod{k}$. Hence $y \in U_k(n)$. Thus $U_k(n)$ is a subgroup of U_n .

THEOREM. 2.10 Let p, q are relatively prime numbers. Then $U_{pq} \approx U_p \oplus U_q$. Moreover, $U_p \approx U_q(pq)$ and $U_q \approx U_p(pq)$.

PROOF. Define a mapping $\phi: U_{pq} \to U_p \oplus U_q$ by $\phi(x) = (x \mod p, x \mod q)$ for all $x \in U_{pq}$. Then for $x, y \in U_{pq}$, $\phi(x)\phi(y) = (x \mod p, x \mod q)(y \mod p, y \mod q)$ $(xy \mod p, xy \mod q) = \phi(xy)$. Thus ϕ is a homomorphism.

Take $x, y \in U_{pq}$ such that $\phi(x) = \phi(y)$. Then x mod $p = y \mod p$ and x mod $q = y$ y mod q. Hence $p|(x-y)$ and $q|(x-y)$ which implies that $pq|(x-y)$, i.e., $x \equiv$ $y(\text{mod }pq)$, i.e., $x=y$ in U_{pq} . Thus ϕ is injective.

Finally, if $(i, j) \in U_p \oplus U_q$ then $gcd(i, p) = 1 = gcd(j, q)$. Since $gcd(p, q) = 1$, $gcd(i, pq) = 1$ and $gcd(j, pq) = 1$ and hence $gcd(ij, pq) = 1$. Thus $ij \in U_{pq}$. Taking $x = ij, \phi(x) = (x \mod p, x \mod q) = (i, j).$ Thus ϕ is onto.

2.3 Internal Direct Product

DEFINITION. 2.11 Let H, K be normal subgroups of a group G. Then G is said to be the *internal direct product* of H and K if every element q of G can be expressed uniquely as $q = hk$ where $h \in H$ and $k \in K$.

The number of ways in which an element $g \in G$ can be expressed as $g = hk$, where $h \in H$ and $k \in K$, is the number of elements in $H \cap K$. Thus the expression $g = hk$ is unique if and only if $H \cap K = \{e\}$, e being the identity element of G.

DEFINITION. 2.12 Let N_1, N_2, \ldots, N_n be normal subgroups of a group G. Then G is said to be the *internal direct product* of the subgroups N_1, N_2, \ldots, N_n if every element g of G can be expressed uniquely as $g = g_1 g_2 \dots g_n$ where $g_i \in N_i$, $1 \le i \le n$.

THEOREM. 2.13 If G is the internal direct product of n normal subgroups N_1, N_2 , ..., N_k Then for $i \neq j$, $1 \leq i, j \leq k$, $N_i \cap N_j = \{e\}.$

PROOF. $G = N_1 N_2 \cdots N_k$, any element $x \in G$ is uniquely represented as $x =$ $n_1 n_2 \dots n_k$ where $n_i \in N_i$, $1 \leq i \leq k$. If $a \in N_i \cap N_j$ then $a \in G$ can be represented as $a = ee \dots eae \dots e$ where $a \in N_i$ appears in *i*-th place. The element $a \in G$ can also be represented as $a = ee \dots eae \dots e$ where $a \in N_j$ appears in j-th place. Hence the representation is unique only if $a = e$. Thus $N_i \cap N_j = \{e\}.$

It has already been shown that for groups G_1, G_2, \ldots, G_n , the subgroup \overline{G}_i = $\{e_1, e_2, \ldots, e_{i-1}, g, e_{i+1}, \ldots, e_n : g \in G_i\}$ of $G_1 \oplus G_2 \oplus \cdots \oplus G_n$ is an isomorphic copy of G_i for $1 \leq i \leq n$. Also each \overline{G}_i is a normal subgroup. Thus we have the following result.

THEOREM. 2.14 If $G = G_1 \oplus G_2 \oplus \cdots \oplus G_n$ is the external direct product then G is the internal direct product of the normal subgroups $\bar{G}_1, \bar{G}_2, \ldots, \bar{G}_n$.

PROOF. An arbitrary element of G is $g = (g_1, g_2, \ldots, g_n)$ where $g_i \in G_i$, $1 \leq i \leq n$. Then for $1 \leq i \leq n$, $\bar{g}_i = (e_1, e_2, \ldots, e_{i-1}, g_i, e_{i+1}, \ldots, e_n) \in \bar{G}_i$ and $g = \bar{g}_1 \bar{g}_2 \cdots \bar{g}_n$. Since this representation is unique, the result follows.

3 Group Action

DEFINITION. 3.1 Let G be a group, X be a set. A function from $G \times X$ to X, $(q, x) \mapsto q \cdot x$, is called a *group action* if the following conditions hold:

1. $e \cdot x = x$ for all $x \in X$, where e is the identity element of G,

2.
$$
g_1 \cdot (g_2 \cdot x) = (g_1 g_2) \cdot x
$$
 for all $g_1, g_2 \in G$ for all $x \in X$.

In such a case we say G is acting on X and X is called a G -set.

- EXAMPLE. 3.2 1. Every group acts on its underlying set, If $(G, *)$ is a group then for $g, x \in G$, $g \cdot x = g * x$ is a group action.
	- 2. Let X be any set, S_X denote the permutation group of X and G be any subgroup of S_X . Then for $\sigma \in G$ and $x \in X$, define $\sigma \cdot x = \sigma(x)$, then $(\sigma, x) \mapsto \sigma \cdot x$ is a group action.
	- 3. In particular, in the above example, if $X = \{1,2,3\}$ and $G = \{i, \sigma, \rho\}$ where i is the identity mapping, $\sigma = (1\ 2\ 3)$ and $\rho = (1\ 3\ 2)$, the three-cycles. Then the group action can be stated in the following tabular form:

$$
\begin{array}{c|cccc}\n & 1 & 2 & 3 \\
\hline\n i & 1 & 2 & 3 \\
 \sigma & 2 & 3 & 1 \\
 \rho & 3 & 1 & 2\n\end{array}
$$

4. Consider the group D_4 , the dihedral group of a square. Let X be the set ${A, B, C, D, p, q}$, where A, B, C, D are the four vertices of the square and p, q are respectively the diagonal AB and CD. for $g \in D_4$ the action of g on an element x in X is the effect of q on X. This is a group action. Note that $D_4 = \{i, r, r^2, r^3, s, rs, r^2s, r^3s\},\$ where r denotes the rotation about the center by an angle 90° in counterclockwise direction and s denotes the flip about the vertical line through the center.

5. Group action on itself by conjugation: Let G be a group, then it acts on its underlying set G by conjugation as follows: for $g \in G$ and $x \in G$, $g \cdot x = gxg^{-1}$. Obviously for $e \in G$ and $x \in G$, $e \cdot x = exe^{-1} = x$ and got $g, h \in G$ and $x \in G$, $h \cdot (g \cdot x) = h \cdot (gxg^{-1}) = h(gxg^{-1})h^{-1} = hgx(hg)^{-1} = (hg) \cdot x.$

If X is a G-set then every element of G induces a permutation on the set X.

THEOREM. 3.3 Let X be a G-set. Then for all $g \in G$ the mapping $\pi_q : X \to X$, defined by $\pi_q(x) = g \cdot x$ for all $x \in X$, is a permutation on X.

PROOF. For $g \in G$, to show that π_g is injective, take $x_1, x_2 \in X$ such that $\pi_g(x_1) =$ $\pi_g(x_2)$. Then $g \cdot x_1 = g \cdot x_2$. Since $g^{-1} \in G$, it follows that $g^{-1} \cdot (g \cdot x_1) = g^{-1} \cdot (g \cdot x_2)$. By property of group action, $(g^{-1}g) \cdot x_1 = (g^{-1}g) \cdot x_2$, i.e., $e \cdot x_1 = e \cdot x_2$ which gives $x_1 = x_2$. Hence π_g is one-one.

For $y \in X$ take $x = \pi_{g^{-1}}(y) = g^{-1} \cdot y$. Then $\pi_g(x) = g \cdot x = g \cdot (g^{-1} \cdot y) = (gg^{-1}) \cdot y = g^{-1} \cdot y$ $e \cdot y = y$. Hence π_g is surjective. Thus π_g is a bijective map, i.e., a permutation. \blacksquare

THEOREM. 3.4 Let X be a G-set. Then the mapping $\phi : G \to S_X$, defined by $\phi(g) = \pi_g$ for all $g \in G$, is a homomorphism.

PROOF. For $q_1, q_2 \in G, x \in X$,

$$
\begin{array}{rcl}\n\phi(g_1g_2)(x) & = & \pi_{g_1g_2}(x) \\
& = & \pi_{g_1}(x) \\
& = & \pi_{g_1}(\pi_{g_2}(x)) \\
& = & \pi_{g_2}(\pi_{g_2}(x)) \\
& = & \pi_{g_2}(\
$$

Hence for all $g_1, g_2 \in G$ and for all $x \in X$, $\phi(g_1g_2)(x) = (\phi(g_1) \circ \phi(g_2))(x)$ which shows that $\phi(g_1g_2) = \phi(g_1) \circ \phi(g_2)$. This shows that $\phi : G \to S_X$ is a homomorphism. ■

DEFINITION. 3.5 Let X be a G-set. The mapping $\phi: G \to S_X$ defined by $g \mapsto \pi_g$ for all $g \in G$ is called the *permutation representation* of the group action.

DEFINITION. 3.6 Let a group G act on a set X. Then the set

$$
\{g \in G : g \cdot x = x \text{ for all } x \in X\}
$$

is called the kernel of the group action and is denoted by G_0 .

It can be observed that if ϕ is the permutation representation of a group action then the kernel of the group G_0 action is the kernel of the homomorphism ϕ .

DEFINITION. 3.7 Let a group G act on a set X. For $x \in X$ the *stabilizer* of x is the set ${g \in G : g \cdot x = x}$, i.e., the set of the members of G those fix the element x. The stabilizer of x is denoted by G_x .

A point $x \in X$ is called a *fixed point* of the action if $q \cdot x = x$ for all $q \in G$.

Hence $x \in X$ is a fixed point if and only if $G_x = G$.

THEOREM. 3.8 For a G-set X and for $x \in X$ the stabilizer G_x is a subgroup of G. PROOF. Since $e \cdot x = x$, $e \in G_x$, thus $G_x \neq \emptyset$. If $g, h \in G_x$ then $(gh) \cdot x = g \cdot (h \cdot x) = g \cdot (h \cdot x)$ $g \cdot x = x$ hence $gh \in G_x$. Also $g \cdot x = x \Rightarrow g^{-1} \cdot (g \cdot x) = g^{-1} \cdot x \Rightarrow (g^{-1}g) \cdot x =$ $g^{-1} \cdot x \Rightarrow x = g^{-1} \cdot x$ showing that $g^{-1} \in G_x$. Hence G_x is a subgroup of G .

Corollary. 3.9 Kernel of a group action is a normal subgroup.

PROOF. If G acts on X then kernel $G_0 = \bigcap \{G_x : x \in X\}$ which is the intersection of a family of subgroups of G, hence is a subgroup of G. Also for $g \in G$, $h \in G_0$ and $x \in X$, $(ghg^{-1}) \cdot x = g \cdot (h \cdot (g^{-1} \cdot x)) = g \cdot (g^{-1} \cdot x)$ (since $h \in G_0$) = $(gg^{-1}) \cdot x = x$ which shows that $ghg^{-1} \in G_0$. Thus G_0 is a normal subgroup.

Alternatively, we can say that $G_0 = \ker \phi$, where $\phi : G \to S_X$ is the permutation representation of the group action, which is a homomorphism. Hence $G_0 = \text{ker } \phi$ is a normal subgroup.

THEOREM. 3.10 If a group G acts on X, then for any $x \in X$ and any $g \in G$, $G_{g \cdot x} = g G_x g^{-1}.$

PROOF. For $h \in G$,

$$
h \in G_{g \cdot x} \iff h \cdot (g \cdot x) = g \cdot x \iff (hg) \cdot x = g \cdot x
$$

$$
\iff g^{-1} \cdot ((hg) \cdot x) = g^{-1}(g \cdot x)
$$

$$
\iff (g^{-1}hg) \cdot x = (g^{-1}g) \cdot x = x
$$

$$
\iff g^{-1}hg \in G_x \iff h \in gG_xg^{-1}.
$$

Hence the result. \blacksquare

EXAMPLE. 3.11 Let $G = D_4$, $X = \{A, B, C, D, p, q, O\}$, A, B, C, D are four vertices, O is the centre and p, q are the diagonals of the square. The action of G on X is the effect of the members of G on the members of X. It can be observed that the kernel of this action is $\{i\}$. We can also find the stabilizers from the table, for example, $G_A = G_C = \{i, r^3s\}, G_p = \{i, r^2, rs, r^3s\}, G_O = G$ etc.

DEFINITION. 3.12 A group action is called a *faithful* if its kernel consists of only the identity element.

It follows immediately that a group action is faithful if and only if different elements of G act differently on the elements of X, i.e., for $g, h \in G$ there exists $x \in X$ such that $q \cdot x \neq h \cdot x$. Equivalently, the action is faithful if and only the permutation representation $\phi: G \to S_X$ is injective.

PROPOSITION. 3.13 Let X be a G-set. The relation \sim on X, defined by for all $x, y \in X$, $x \sim y$ if and only if there exists $g \in G$ such that $g \cdot x = y$, is an equivalence relation on X.

PROOF. Since $e \cdot x = x$, where e is the identity element of G, we have $x \sim x$. Thus ∼ is reflexive. Also for $x, y \in X$, $x \sim y \Rightarrow \exists g \in G$ such that $g \cdot x = y$ $\Rightarrow g^{-1} \cdot (g \cdot x) = g^{-1} \cdot y \Rightarrow (g^{-1}g) \cdot x = g^{-1} \cdot y \Rightarrow e \cdot x = g^{-1} \cdot y \Rightarrow x = g^{-1} \cdot y \Rightarrow y \sim x.$ Thus \sim is symmetric. Finally, for $x, y, z \in X$ let $x \sim y$ and $y \sim z$. Then there exist $g_1, g_2 \in G$ such that $y = g_1 \cdot x$ and $z = g_2 \cdot y$. Hence $z = g_2 \cdot (g_1 \cdot x) = (g_2 g_1) \cdot x$ showing that $x \sim z$. Thus \sim is transitive. Hence \sim is an equivalence relation. ■

DEFINITION. 3.14 Let X be a G-set. The equivalence classes related to the action of G on X are called the *orbits* of the action. The orbit containing the element x is denoted by $\mathcal{O}(x)$.

The orbits on X form a partition of X. For a fixed point $x \in X$, $\mathcal{O}(x) = \{x\}$.

THEOREM. 3.15 (ORBIT-STABILIZER THEOREM) Let a finite group G act on a set X. Then for $x \in X$, $|\mathcal{O}(x)| = [G : G_x]$, i.e., the number of elements in the orbit of x is the index of the stabilizer of x in G .

PROOF. Note that if $y \in \mathcal{O}(x)$ then there exists $q \in G$ such that $y = q \cdot x$. Define a mapping $f: \mathcal{O}(x) \to G/G_x$ by $f(y) = gG_x$ for all $y = gx \in \mathcal{O}(x)$. (Here we do not require G_x to be a normal subgroup of G , we are considering just the set of left cosets of G_x in G.) If $y, z \in \mathcal{O}(x)$ then there exist $g, h \in G$ such that $y = g \cdot x, z = h \cdot x$. Then,

$$
f(y) = f(z) \Rightarrow gG_x = hG_x \Rightarrow h^{-1}g \in G_x \Rightarrow (h^{-1}g) \cdot x = x
$$

$$
\Rightarrow h \cdot (h^{-1} \cdot (g \cdot x)) = h \cdot x \Rightarrow g \cdot x = h \cdot x \Rightarrow y = z.
$$

Thus f is injective. Also for $gG_x \in G/G_x$, if $y = g \cdot x$ then $f(y) = gG_x$. Thus f is surjective. Hence f is a bijection.

Thus $|O(x)| = |G/G_x|$. Since $[G:G_x] = |G/G_x| = \frac{|G|}{|G_x|}$ $\frac{|G|}{|G_x|}$, the result follows.

COROLLARY. 3.16 Let a finite group act on a finite set X . If the disjoint orbits are represented by the elements x_1, x_2, \ldots, x_k then

$$
|X| = \sum_{i=1}^{k} |\mathcal{O}(x_i)| = \sum_{i=1}^{k} [G : G_{x_i}].
$$

PROOF. First part follows from the fact that $X = \bigcup_{i=1}^{k} \mathcal{O}(x_i)$ and for $i \neq j, 1 \leq i <$ $j \leq k, \mathcal{O}(x_i) \cap \mathcal{O}(x_j) = \emptyset$. The Second part follows from $|\mathcal{O}(x_i)| = [G:G_{x_i}] = \frac{|G|}{|G_{x_i}|}$.

DEFINITION. 3.17 An action of a group G on a set X is called *transitive* if there is only one orbit. That is, for any two elements $x, y \in X$, there is a $q \in G$ such that $g \cdot x = y$. A subgroup of S_X is called transitive if it acts transitively on X.

EXAMPLE. 3.18 Let $X = \{1, 2, 3\}$ and $G = S_3$. Then G acts on X as the effect of the members of S_3 on the elements of X. If $G = \{i, \sigma, \rho, f, g, h\}$ where i is the identity mapping, $\sigma = (1 2 3), \rho = (1 3 2),$ the three cycles and $f = (1 2), g = (3 1), h = (2 3),$ the transpositions. The action can be viewed in the following table:

$$
\begin{array}{c|cccc}\n & 1 & 2 & 3 \\
\hline\n i & 1 & 2 & 3 \\
 \sigma & 2 & 3 & 1 \\
 \rho & 3 & 1 & 2 \\
 f & 2 & 1 & 3 \\
 g & 3 & 2 & 1 \\
 h & 1 & 3 & 2\n\end{array}
$$

Here it can be observed that $\mathcal{O}(1) = \mathcal{O}(2) = \mathcal{O}(3) = X$, hence the action is transitive. It can also be observed that the subgroup $A_3 = \{i, \sigma, \rho\}$ acts transitively on X and hence S_3 and A_3 are transitive subgroups of S_3 . The subgroup $H =$ ${i, f}$ is not transitive since $\mathcal{O}(1) = \{1, 2\} = \mathcal{O}(2)$ and $\mathcal{O}(3) = \{3\}$. Similarly the subgroups $\{i, g\}$ and $\{i, h\}$ are not transitive subgroups.

4 Sylow's Theorem

4.1 Group action by conjugacy

DEFINITION. 4.1 Let G be a group. Two elements $x, y \in G$ are called *conjugate* if there exists an element $g \in G$ such that $y = gxg^{-1}$.

The relation of being conjugate is an equivalence relation on G , the equivalence classes are called the *conjugacy classes*. Thus for $x \in G$ the conjugate class of x is $Cl(x) = \{y \in G : \exists g \in G \text{ s.t. } y = gxg^{-1}\} = \{gxg^{-1} : g \in G\}.$

We recall the following definition.

DEFINITION. 4.2 The conjugacy defines a group action on itself as follows: for $g \in G$ and $x \in G$ define $g \cdot x = gxg^{-1}$. We call it as group acts on itself by conjugation.

It follows immediately from definition that

- 1. For $x \in G$ the orbit of x is $\mathcal{O}(x) = Cl(x)$, the conjugacy class of x.
- 2. When $x \in Z(G)$, the center of G, then $gx = xg$ for all $g \in G$. Hence the orbit of x is given by $\mathcal{O}(x) = \{y \in G : \exists g \in G \text{ s.t. } y = gxg^{-1}\}\$. But as $gxg^{-1} = x$ we have $\mathcal{O}(x) = Cl(x) = \{x\}.$
- 3. For any $x \in G$ the stabilizer of x with respect to this particular group action is $G_x = \{g \in G : g \cdot x = x\} = \{g \in G : gxg^{-1} = x\} = \{g \in G : gx = xg\}$ $C_G(x)$, the centralizer of x.

THEOREM. 4.3 (THE CLASS EQUATION) Suppose that a finite group G acts on itself by conjugation. If x_1, x_2, \ldots, x_n be the representatives of the distinct nontrivial orbits, then

$$
|G| = |Z(G)| + \sum_{i=1}^{n} |G|/|G_{x_i}|
$$

PROOF. Note that as the orbits form a partition on G ,

$$
G = \bigcup \{ \mathcal{O}(x) : x \in \text{distinct orbits} \}.
$$

Since for $x \in Z(G)$, $\mathcal{O}(x) = \{x\}$ it follows that

$$
G = Z(G) \cup \{ \mathcal{O}(x) : x \in \{x_1, x_2, \dots, x_n\} \}.
$$

Since distinct orbits are disjoint it follows that

$$
|G| = |Z(G)| + \sum_{i=1}^{n} |\mathcal{O}(x_i)|.
$$

By Orbit-Stabilizer Theorem we have $|\mathcal{O}(x_i)| = [G:G_{x_i}] = \frac{|G|}{|G_{x_i}|}$, hence

$$
|G| = |Z(G)| + \sum_{i=1}^{n} \frac{|G|}{|G_x|}.
$$

Hence the result.

THEOREM. 4.4 If p is a prime number and G be a group of order p^k for some $k \geq 1$ then $Z(G)$ is non-trivial.

PROOF. By class equation we have $|G| = |Z(G)| + \sum_x$ in distinct orbits $[G: G_x]$. Since for each $x \notin Z(G)$, G_x is a subgroup of G , $|G_x|$ divides $|G| = p^k$, we have $|G_x| = p^j$ for some $1 \leq j < k$. Hence p divides $[G:G_x]$ for each $x \in G \setminus Z(G)$. Also p divides |G|. Thus, p divides $|Z(G)|$. This shows that $Z(G)$ is non-trivial.

COROLLARY. 4.5 If p is a prime number then any group of p^2 is abelian. Moreover G is either isomorphic to \mathbb{Z}_{p^2} or isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$.

PROOF. By class equation $Z(G)$ is nontrivial. Since $|Z(G)|$ divides $|G|$ and $|G| = p^2$ we have either $|Z(G)| = p^2$ or $|Z(G)| = p$.

If $Z(G) = p^2$ then $G = Z(G)$, hence G is abelian.

If $|Z(G)| = p$ choose $x \in G \setminus Z(G)$. Then G_x is a subgroup of G. Also $g \in Z(G) \Rightarrow$ $gx = xg \Rightarrow gxg^{-1} = x \Rightarrow g \cdot x = x$, showing that $g \in G_x$. Hence $Z(G) \subsetneq G_x$ as $x \in G_x \setminus Z(G)$. If $G_x = G$ then $g \cdot x = x$ for all $g \in G$, i.e., $gxg^{-1} = x$ for all $g \in G$ which implies that $x \in Z(G)$ — a contradiction. Hence G_x is a proper subgroup of G and $p = |Z(G)| < |G_x| < |G| = p^2$ — which is again a contradiction as p is a prime.

Hence we must have $|Z(G)| = p^2$, i.e., G is abelian.

For the second part, if G contains an element a of order p^2 then $G = \langle a \rangle$, i.e., a cyclic group of order p^2 , hence is isomorphic to \mathbb{Z}_{p^2} .

Otherwise all non-identity elements of G are of order p. Choose $x \in G$ with $o(x) = p$. Then $\langle x \rangle$ is a subgroup of order p. Choose $y \in G - \langle x \rangle$, then $\langle y \rangle$ is also subgroup of order p. Also since $p = |\langle x \rangle| < |\langle x, y \rangle| \leq |G| = p^2$ we must have $|\langle x, y \rangle| = p^2$ and hence $G = \langle x, y \rangle$. Now, $\langle x \rangle$, $\langle y \rangle$ being cyclic groups of order p we have $\langle x \rangle \times \langle y \rangle$ is isomorphic to $\mathbb{Z}_p\times\mathbb{Z}_p$.

Define a mapping $\phi: \langle x \rangle \times \langle y \rangle \rightarrow \langle x, y \rangle$ by $\phi(x^i, y^j) = x^i y^j$ for all $(x^i, y^j) \in \langle x \rangle \times \langle y \rangle$. It immediately follows that ϕ is an isomorphism and hence G is isomorphic tp $\mathbb{Z}_p\times\mathbb{Z}_p$. ■

4.2 Sylow's Theorem

Recall that for a group G and $x \in G$ the centralizer of x is $C_G(x) = \{y \in G :$ $yxy^{-1} = x$. It has been proved that $C_G(x)$ is a subgroup of G. When a group G acts on itself by conjugacy then the conjugacy class of an element $a \in G$ is given by $Cl(x) = \{gxg^{-1} : g \in G\}$. It has also been proved that $Cl(x) = \mathcal{O}(x)$, orbit of x with respect to the group action by conjugacy. The following gives the size of a conjugacy class.

THEOREM. 4.6 For a finite group G and $x \in G$, $|Cl(x)| = [G : C_G(x)]$.

PROOF. By Orbit-Stabilizer Theorem, $|\mathcal{O}(x)| = [G : G_x]$. Since for the group action by conjugacy $\mathcal{O}(x) = Cl(x)$ and $G_x = C_G(x)$, the result follows.

It is known from the Lagrange's Theorem that if G is a group of order n and it has a subgroup of order m then m divides n. The converse need not be true always, for example the alternation group A_4 is of order 12 has no subgroup of order 6, though 6 divides 12. A sufficient condition is given here for which the converse of Lagrange's Theorem holds partially.

We recall a theorem for finite abelian group which will be used to prove the Sylow's Theorem.

THEOREM. 4.7 If G is a finite abelian group and if p is a prime that divides the order of G then G has an element of order p.

PROOF. The proof will be done by induction on the order of G. If $|G| = 2$ the result holds trivially. Let G be a group of order $n > 2$. If for a proper subgroup H of G, p divides |H| then by induction hypothesis H has an element of order p — hence the result is proved. So we assume that for all proper subgroup H of G , p does not divide $|H|$.

For a proper subgroup H of G, $|G| = |G/H| \cdot |H|$. Since p divides $|G|$ and p does not divide |H| we must have p divides $|G/H|$. Hence by induction hypothesis G/H has an element, say aH , of order p. Thus $(aH)^p = H$, or $a^p \in H$. If $|H| = m$ then $(a^p)^m = e$, i.e., $a^{mp} = e$ hence $(a^m)^p = e$, where e is the identity element of G. Taking $b = a^m$ we can say that b is an element of order p if $b \neq e$.

If possible suppose that $b = a^m = e$. Then $(aH)^m = a^m H = H$. Since p and m are prime to each other, there exist integers x, y such that $mx + py = 1$. Then

$$
aH = a^{mx+py}H = (aH)^{mx}(aH)^{py}
$$

$$
= ((aH)^m)^x((aH)^p)^y = H^xH^y = H
$$

this is a contradiction since $|aH| = p$. Thus, we have $b \neq e$ and hence b is the required element of G with order p .

THEOREM. 4.8 (SYLOW'S FIRST THEOREM) Let G be a finite group and p be a prime such that p^k divides |G|. Then G has a subgroup of order p^k .

PROOF. The theorem will be proved by induction on $n = |G|$. If $n = 1$ the result holds trivially. So let us assume that $n > 1$ and the result holds for all groups of order less than n.

If G has a proper subgroup H such that p^k divides |H| then by induction hypothesis H has a subgroup of order p^k and hence G has a subgroup of order p^k , i.e., the theorem is proved. So we assume that G has no proper subgroup whose order is divisible by p^k .

Since |G| is divisible by p^k it follows that $|Z(G)|$ is divisible by p (Theorem 4.4). Since $Z(G)$ is an abelian group, $Z(G)$ has an element, say a, of order p. Then $N = \langle a \rangle$ is a group of order p. Also since $a \in Z(G)$ it follows that N is a normal subgroup of G. So we may consider the quotient group G/N , whose order is $\frac{|G|}{|N|}$ which is divisible by p^{k-1} .

By induction hypothesis G/N has a subgroup, say M, of order p^{k-1} . Let $\phi: G \to$ G/N be the natural homomorphism $g \mapsto gN$ for all $g \in G$. Consider the set $H = \{g \in G : \phi(g) \in M\} = \phi^{-1}(M)$. Then $g_1, g_2 \in H \Rightarrow g_1 N, g_2 N \in M \Rightarrow$ $g_1g_2^{-1}N \in M \Rightarrow g_1g_2^{-1} \in H$. Thus H is a subgroup of G. Hence $M = H/N$. Since $|M| = p^{k-1} = \frac{|H|}{|N|}$ $\frac{|H|}{|N|}$ and $|N| = p$, we have $|H| = p^k$ — contradiction that G has no proper subgroup of order p^k .

Hence G must have a proper subgroup of order p^k . This completes the proof. \blacksquare

EXAMPLE. 4.9 Let G be a group of order 180. Since $180 = 2^2 3^2 5$, the above theorem says that G has subgroups of order $2, 4, 3, 9$ and 5. However this theorem can not say whether G has subgroups of order $6, 10, 12, 15, 18, 20, 30, 45, 60$ or 90 even though each of these number divides 180.

DEFINITION. 4.10 Let G be a finite group and p be a prime. A subgroup of order p is called a p-subgroup of G. If p^k divides |G| and P^{k+1} does not divide |G| then a subgroup of order p^k of G is called a Sylow p-subgroup of G (also called p-Sylow subgroup).

For a group of order 180 a subgroup of order 4 is a Sylow 2-subgroup, a subgroup of order 9 is Sylow 3-subgroup and a subgroup of order 5 is a Sylow 5-subgroup. However a subgroup of order 3 is a 3-subgroup of G , not a Sylow 3-subgroup.

DEFINITION. 4.11 Two subgroups H, K of a group G are said to be conjugate if there exists $g \in G$ such that $H = gKg^{-1}$.

LEMMA. 4.12 Let H be a p-group, where p is a prime number, S is a finite set and H acts on S. Let $S_0 = \{s \in S : \mathcal{O}(s) = \{s\}\}\$ be the collection of all those elements of S which are fixed by the group action. Then $|S| \equiv |S_0| \pmod{p}$.

PROOF. Since the orbits form a partition on S, $|S| = \sum |\mathcal{O}(s)|$, where summation is taken over the representatives of all the distinct orbits. S_0 being the collection

of elements of singleton orbits we have $|S| = |S_0| + \sum |\mathcal{O}(s)|$, where summation is taken over the representatives of non-trivial orbits. By orbit-Stabilizer theorem we have $|\mathcal{O}(s)| = |H|/|H_s|$, where H_s is the stabilizer of $s \in S$. Since $|H| = p^k$ for some $k \geq 1$ and H_s is a subgroup of H, we have $|H_s| = p^m$ for some $m < k$, hence $|O(s)|$ is divisible by p. Thus $|S| \equiv |S_0| \pmod{p}$.

THEOREM. 4.13 (SYLOW'S SECOND THEOREM) Let G be a finite group and p be a prime such that $p^k \mid |G|$ but $p^{k+1} \nmid |G|$. Then (i) Any p-subgroup of G is contained in some Sylow p-subgroup of G and (ii) any two Sylow p-subgroups are conjugate.

PROOF. (i) Let H be a p-subgroup of G and P be a Sylow p-subgroup of G. Take $S =$ ${gP : g \in G}$, the set of all left cosets of P. Let H act on S by left multiplication: $h \cdot gP = hqP$ for all $h \in H$, for all $qP \in S$. Let $S_0 \subset S$ denote the set of fixed points of the group action, i.e., $S_0 = \{ gP \in S : h \cdot gP = gP \forall h \in H \}$. Then by the above lemma we have $|S_0| \equiv |S| \pmod{p}$. Since $|S| = \frac{|G|}{|P|}$ $\frac{|G|}{|P|}$ is not divisible by p we have $|S_0| \geq 1$. Let $gP \in S_0$. Then,

$$
hgP = gP \quad \forall h \in H \Rightarrow g^{-1}hgP = P \quad \forall h \in H
$$

$$
\Rightarrow g^{-1}hg \in P \quad \forall h \in H \Rightarrow g^{-1}Hg \subset P \Rightarrow H \subset gPg^{-1}
$$

Since conjugacy is an automorphism, gPg^{-1} is also a Sylow p-group and hence H is contained in a Sylow p-subgroup.

(ii) In particular if $H = P_1$ is another Sylow p-subgroup, then $P_1 \subset gPg^{-1}$, but $|P_1| = |gPg^{-1}|$, and hence $P_1 = gPg^{-1}$. Thus any two Sylow p-subgroups are conjugate. \blacksquare

THEOREM. 4.14 (SYLOW'S THIRD THEOREM) Let p be a prime and G be a finite group of order p^km where $p\nmid m$. If P is a Sylow p-subgroup then (i) the number of Sylow p-subgroups is $n_p = [G : N_G(P)]$, where $N_G(P)$ is the normalizer of P, (ii) n_p divides $|G|/|P|$ and (iii) $n_p \equiv 1 \pmod{p}$.

PROOF. (i) Let S denote the set of all Sylow p-subgroups of G . Let G act on S by conjugacy operation, $g \cdot P = gPg^{-1}$ for all $g \in G$ and for all $P \in S$. By Sylow's Second Theorem for any $P \in S$, $\mathcal{O}(P) = S$. By Orbit-Stabilizer Theorem $|\mathcal{O}(P)| = [G : G_P]$, where G_P is the stabilizer of P.

Since $G_P = \{g \in G : g \cdot P = P\} = \{g \in G : gPg^{-1} = P\} = N_G(P)$ it follows that $n_p = |S| = |O(P)| = [G : N_G(P)].$ Hence (i) follows.

(ii) Note that P is a normal subgroup of $N_G(P)$ and $N_G(P)$ is a subgroup of G.

Also $[G: N_G(P)] = \frac{|G|}{|N_G(P)|}$ and $[N_G(P): P] = \frac{|N_G(P)|}{|P|}$. Hence $\frac{|G|}{|P|} = [G: N_G(P)] \times$ $[N_G(P):P]=n_p\times [N_G(P):P].$ This shows that n_p divides $\frac{|G|}{|P|}$.

(iii) Let P act on S by conjugacy and S_0 denote the set of elements of S fixed by group action, i.e., $S_0 = \{Q \in S : g \cdot Q = Q \,\forall g \in P\}$. Then for $g \in P$ and $Q \in S_0$, $gQg^{-1} = Q$ which implies that $g \in N_G(Q)$ and hence $P \subset N_G(Q)$. By Sylow's second Theorem P and Q are conjugate in G and hence in particular conjugate in $N_G(Q)$, also Q is normal in $N_G(Q)$, thus $P = Q$. This shows that $S_0 = \{P\}$. By Lemma $|S| \equiv |S_0| \pmod{p}$, i.e., $n_p \equiv 1 \pmod{p}$. This completes the proof.

COROLLARY. 4.15 For a prime p a finite group G has a unique Sylow p-subgroup P if and only if P is normal.

PROOF. Assume that P is the only Sylow p-subgroup of G. Then for any $q \in G$, gPg^{-1} is a Sylow p-subgroup and hence $gPg^{-1} = P$. Thus P is normal. Conversely, Assume that P is normal. If Q is a Sylow p-subgroup then there exists $g \in G$ such that $Q = qPq^{-1} = P$. Hence P is the only Sylow p-subgroup of G.

COROLLARY. 4.16 If p, q are primes, $p < q$ and $p \nmid q-1$ then a group G of order pq is isomorphic to \mathbb{Z}_{pq} .

PROOF. Let P be a Sylow p-subgroup and Q be a Sylow q-subgroup of G. Then $n_p \equiv 1 \pmod{p}$, i.e, $n_p = 1 + kp$ for some integer $k \geq 0$ and $n_p | q$. Similarly $n_q = 1 + lq$ for some integer $l \geq 0$ and $n_q | p$. Since $p < q$, $n_q = 1 + lq | p$ is possible only if $l = 0$, thus $n_q = 1$ and hence Q is a normal subgroup of G.

Since n_p divides the prime number q, either $n_p = 1$ or $n_p = q$. Since $p \nmid q - 1$ and $p \mid n_p - 1$, $n_p = q$ is false. Thus $n_p = 1$ and hence P is a normal subgroup of G.

P, Q being groups of prime orders p, q respectively, they are cyclic groups. Let $P = \langle a \rangle$ and $Q = \langle b \rangle$. Obviously $G = PQ$. Since $P \cap Q = \{e\}$, $G = P \times Q$.

Also since $P \approx \mathbb{Z}_p$ and $Q \approx \mathbb{Z}_q$ we have $P \times Q \approx \mathbb{Z}_p \times \mathbb{Z}_q \approx \mathbb{Z}_{pq}$.

EXAMPLE. 4.17 1. Let us consider a group G of order 40. Since $40 = 2^35$, a Sylow 2-subgroup is of order 8 and a Sylow 5-subgroup is of order 5.

There are n_2 number of Sylow 2-subgroups, then $2 \mid n_2 - 1$ and $n_2 \mid \frac{40}{8} = 5$, i.e., $n_2 = 2k + 1$ | 5. Hence $n_2 = 1$ or 5 (for $k = 0$ and $k = 2$). If $n_2 = 1$, the Sylow 2-subgroup is normal, if $n_2 = 5$ none of the five Sylow 2-subgroups is normal.

The number of Sylow 5-subgroups is n_5 , then $5 | n_5 - 1$ and $n_5 | \frac{40}{5} = 8$, i.e., $n_5 = 5k + 1$ | 5. Hence $n_5 = 1$ is the only solution $(k = 0)$, the only Sylow 5-subgroup is normal.

2. How many Sylow p -subgroups of S_5 are there?

 $|S_5| = 120 = 2^3 \cdot 3 \cdot 5$. It has Sylow 2-subgroups of order 8, Sylow 3-subgroups of order 3 and Sylow 5-subgroups of order 5.

The number of Sylow 2-subgroups is n_2 . So 2 | $n_2 - 1$ and n_2 | 120/8 = 15, i.e., $n_2 = 2k + 1$ | 15. The solutions are $n_2 = 1, 3, 5$ or 15. Note that any four elements of $\{1, 2, 3, 4, 5\}$ can form four vertices of a square which generates D_4 , the dihedral group of order 4. Since $|D_4| = 8$, D_4 is a Sylow 2-subgroup. The 4 vertices can be arranges in 24 ways, the vertices arranged in same 4 cycle structure give the same group. (for example, $(1\ 2\ 3\ 4) = (2\ 3\ 4\ 1) =$ $(3\ 4\ 1\ 2) = (4\ 1\ 2\ 3)$. Also the vertices interchanges horizontally give the same group (for example (1 2 3 4) and (2 1 4 3) give same group). Hence 24 arrangements give 3 different groups of order 8. There are ${}^5C_4 = 5$ ways to choose 4 elements from $\{1, 2, 3, 4, 5\}$. Each choice give 3 different group of order 8. Hence $n_2 = 5 \times 3 = 15$.

The number of Sylow 3-subgroups is n_3 . So $n_3 = 3k + 1$ | 120/3 = 40, i.e., $n_3 = 1, 10$ or 40 (for $k = 0, 3, 13$).

The number of Sylow 5-subgroups is n_5 . So $n_5 = 5k + 1$ | 120/5 = 24, i.e., $n_5 = 1, 6$ are the possibility.

Since a Sylow p-subgroup in A_5 is also a Sylow p-subgroup in S_5 and A_5 is simple (i.e., it has no proper normal subgroup), in both the cases above $n_3 = 1$ and $n_5 = 1$ are cancelled. Thus, $n_3 = 10$ or 40 and $n_5 = 6$.

An element in S_5 has an order is 3 if and only if it is a 3-cycle. The number of distinct 3-cycles in S_5 is $\frac{5!}{3 \cdot 2!} = 20$. Each Sylow 2-subgroup contains 2 nonidentity elements, and hence there can be $20/2 = 10$ such groups. Hence $n_3 = 10$.

3. The possibilities for the number of elements of order 5 in a group of order 100. $100 = 2²5²$, so a group of order 100 can have Sylow 2-subgroups of order 4 and Sylow 5-subgroups of order 25.

 $n_5 = 5k + 1$ | 4, the only possibility is $k = 0$, i.e., $n_5 = 1$. Hence the group has only one Sylow 5-subgroup P which of order 25. So either $P \approx \mathbb{Z}_{25}$ or $P \approx \mathbb{Z}_5 \oplus \mathbb{Z}_5$. In former case the elements in \mathbb{Z}_{25} of order 5 are $\bar{5}$, $\bar{10}$, $\bar{15}$ and 20 , thus P has four elements of order 5. In the later case all the elements of $\mathbb{Z}_5 \oplus \mathbb{Z}_5$ other than the identity element are of order 5. Hence in that case the number of elements of order 5 in P is 24.

4. A group of order 175 is Abelian.

Let G be a Group of order 175. We have $175 = 3^2 \cdot 5^2$. so the order of Sylow 3-subgroup is 9. The number of Sylow 3-subgroups is $n_3 = 3k + 1 \mid 25$, hence $n_3 = 1$ is the only possibility. Also the order of Sylow 5-subgroup is 25. The number of Sylow 5-subgroup is $n_5 = 5k + 1$ | 9, hence $n_5 = 1$.

Let H, K denote the Sylow 3-subgroup and Sylow 5-subgroup respectively. Then H, K are normal and $|H| = 3^2$, $|K| = 5^2$ which imply that both H, K are Abelian. Each non-identity element of H has order 3 or 9 and each nonidentity element of K has order 5 or 25. Hence $H \cap K = \{e\}$. This Shows that $G = HK$. Since H, K are Abelian, G is Abelian.

4.3 Conjugacy classes in S_n

PROPOSITION. 4.18 For $n \geq 3$ the product of two transpositions in S_n is either a 3-cycle or a product of two 3-cycles.

PROOF. Let τ_1, τ_2 be two transpositions in S_n , where $n \geq 3$. If $\tau_1 = \tau_2$ then since $\tau_1 = \tau_1^{-1}$ we have $\tau_1 \tau_2 = i = (1\ 2\ 3)(1\ 3\ 2)$, a product of two 3-cycles.

Assume that $\tau_1 \neq \tau_2$. Then two cases may arise, (i) either τ_1 and τ_2 have a common element or (ii) they are disjoint. For the first case assume that $\tau_1 = (i_1 \ i_2)$ and $\tau_2 = (i_2 \ i_3)$, then $\tau_1 \tau_2 = (i_1 \ i_2 \ i_3)$ — a 3-cycle. For the second case, let $\tau_1 = (i_1 \ i_2)$ and $\tau_2 = (i_3 \, i_4)$, then $\tau_1 \tau_2 = (i_1 \, i_2)(i_3 \, i_4) = (i_1 \, i_4 \, i_3)(i_1 \, i_2 \, i_3)$ — a product of two 3-cycles.

PROPOSITION. 4.19 For $n \geq 3$ every element of the alternating group A_n is a product of 3-cycles.

PROOF. An element $\sigma \in A_n$ is a product of an even number of transpositions. Since product of every pair of transpositioins is either a 3-cycle or a product of two 3-cycles it follows that σ is a product of 3-cycles.

PROPOSITION. 4.20 Let $\sigma, \tau \in S_n$. Then $\tau \sigma \tau^{-1}$ is obtained by replacing the symbol i in σ by $\tau(i)$.

PROOF. For $i \in \{1, 2, ..., n\}$ let $\sigma(i) = j$, $\tau(i) = s$ and $\tau(j) = t$. Then $\tau \sigma \tau^{-1}(s) =$ $\tau\sigma(\tau^{-1}(s)) = \tau\sigma(i) = \tau(j) = t$. Hence when σ moves i to j then $\tau\sigma\tau^{-1}$ moves s to

t, i.e., $\tau \sigma \tau^{-1}$ moves $\tau(i)$ to $\tau(j)$. Hence $\tau \sigma \tau^{-1}$ is obtained by replacing the symbol i in σ by $\tau(i)$.

EXAMPLE. 4.21 Let in S_5 , $\sigma = (1\ 5\ 3\ 2)$ and $\tau = (2\ 4)(1\ 5)$. Then $\tau(1) = 5$, $\tau(5) =$ $1, \tau(3) = 3$ and $\tau(2) = 4$. Thus $\tau \sigma \tau^{-1} = (\tau(1) \tau(5) \tau(3) \tau(2)) = (5 \ 1 \ 3 \ 4) = (1 \ 3 \ 4 \ 5)$. This can be viewed in tabular form also:

$$
\sigma = \left(\begin{array}{rrr} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 4 & 3 \end{array}\right) \text{ and } \tau = \left(\begin{array}{rrr} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{array}\right), \tau \sigma \tau^{-1} = \left(\begin{array}{rrr} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 5 & 1 \end{array}\right).
$$

EXAMPLE. 4.22 Let $\sigma = (2 \ 3)(4 \ 6 \ 8)(1 \ 5 \ 7 \ 9)$ and $\tau = (1 \ 3)(7 \ 9 \ 8)(3 \ 4 \ 6)$. Then $\tau \sigma \tau^{-1} = (2 \ 4)(6 \ 1 \ 7)(3 \ 5 \ 9 \ 8).$

PROPOSITION. 4.23 Two k-cycles in S_n are conjugate.

PROOF. Let $\sigma = (i_1 i_2 \ldots i_k)$ and $\rho = (j_1 j_2 \ldots j_k)$ be two k-cycles. Take $\tau \in S_n$ as follows: $\tau(i_1) = j_1, \tau(i_2) = j_2, \ldots, \tau(i_k) = j_k$. Then $\tau \sigma \tau^{-1} = \rho$, hence σ and ρ are conjugate.

PROPOSITION. 4.24 Two permutations in S_n are conjugate if and only if they have the same cycle structure.

PROOF. If σ and ρ in S_n have the same cycle structure, then since the cycles of same length are conjugate and conjugacy is an automorphism it follows that σ and ρ are conjugate.

Conversely, if σ and ρ are conjugate then $\rho = \tau \sigma \tau^{-1}$ for some $\tau \in S_n$. But in this case ρ is obtained by replacing the entries of σ by their τ images and hence ρ and σ have the same cycle structure.

DEFINITION. 4.25 For $n \in \mathbb{N}$, a partition of n is a non-decreasing sequence of integers n_1, n_2, \ldots, n_k whose sum is $n, i.e., 0 \leq n_1 \leq n_2 \leq \cdots \leq n_k$ such that $n_1 + n_2 + \cdots + n_k = n.$

THEOREM. 4.26 The number of conjugacy classes in S_n is equal to the number of partitions of n.

PROOF. Let $\sigma \in S_n$. Arrange the disjoint cycles of σ (including 1-cycles) in nondecreasing order so that the cycle lengths form a partition of n. Any member $\rho \in S_n$ conjugate to σ has the same cycle structure and hence defines the same partition of n. Thus a conjugate class defines a unique partition of n. On the other hand, given any partition of n a permutation can be constreucted having the cycle lengths of the partition members. Hence the number of conjugacy classes in S_n is equal to the number of partitions of n .

- EXAMPLE. 4.27 1. Take $n = 4$. The partitions of 4 are, $4 = 1 + 1 + 1 + 1, 4 =$ $1 + 1 + 2, 4 = 1 + 3, 4 = 2 + 2, 4 = 4$. Hence S_4 has five conjugacy classes, i.e., $(1)(2)(3)(4) = i$, $(1)(2)(34) = (34)$, $(1)(234) = (234)$, $(12)(34)$ and $(1\ 2\ 3\ 4).$
	- 2. When $n = 5$, the partitions of 5 and a representative of each conjugate class are given in the following table. Here the 1-cycles are omitted.

4.4 simplicity of A_n

In this section we shall prove that for $n \geq 5$ the group A_n contains no normal subgroup other than itself and the trivial group.

PROPOSITION. 4.28 For $n \geq 5$ any two 3-cycles are conjugate in A_n .

PROOF. Let σ , ρ be two 3-cycles in A_n . It is known that any two k-cycles in S_n are conjugate, hence, in particular, the 3-cycles σ , ρ are conjugate in S_3 .

Without any loss of generality we may assume that $\sigma = (1\ 2\ 3)$, so there exists $\tau \in S_3$ such that $\rho = \tau \sigma \tau^{-1}$. If $\tau \in A_n$ then σ, ρ become conjugate in A_n . If $\tau \notin A_n$, i.e., τ is an odd permutation, take $\mu = \tau(4\;5)$ so that $\mu \in A_n$. Then $\mu \sigma \mu^{-1} = \tau (4\ 5)(1\ 2\ 3)(4\ 5)^{-1} \tau^{-1} = \tau (4\ 5)(1\ 2\ 3)(4\ 5) \tau^{-1} = \tau (1\ 2\ 3)\tau^{-1} = \rho.$ Thus σ and ρ are conjugate in A_n .

LEMMA. 4.29 For $n > 3$, $Z(S_n) = \{i\}.$

PROOF. Let $\sigma \in S_n$, $\sigma \neq i$. So there exists $k \in \{1, 2, ..., n\}$ such that $\sigma(k) =$ $l \neq k$. Since $n \geq 3$ choose $m \in \{1, 2, ..., n\}$ such that $m \notin \{k, l\}$. Consider the transposition $\tau = (l \; m)$. Then $\tau \sigma \tau^{-1}(k) = \tau \sigma(k) = \tau(l) = m$ and $\sigma(k) = l$. Hence

 $\tau \sigma \tau^{-1}(k) \neq \sigma(k)$, which shows that $\tau \sigma \tau^{-1} \neq \sigma$, i.e., $\tau \sigma \neq \sigma \tau$. Thus $\sigma \not\in Z(S_n)$ and hence $Z(S_n) = \{i\}.$

THEOREM. 4.30 For an integer $n \geq 5$ the only non-trivial proper normal subgroup of S_n is A_n .

PROOF. For every $n \in \mathbb{N}$, A_n is a normal subgroup of S_n . To prove for $n \geq 5$, A_n is the only normal subgroup other than $\{i\}$ and S_n .

Let N be a normal subgroup of S_n , $N \neq \{i\}$ and $N \neq S_n$. Take $\sigma \in N$. Since $Z(S_n)$ is the trivial subgroup, and members of S_n are products of transpositions there exists a transposition τ such that $\sigma \tau \neq \tau \sigma$, i.e., $\sigma \tau \sigma^{-1} \neq \tau$. Let $\tau_1 = \sigma \tau \sigma^{-1}$, then τ and τ_1 are conjugate and hence τ_1 is a transposition.

Since $\tau = \tau^{-1}$ and $\sigma \in N$ it follows that $\tau \tau_1 = \tau \sigma \tau \sigma^{-1} = (\tau \sigma \tau^{-1}) \sigma^{-1} \in N$. Hence N contains a product of two transpositions τ and τ_1 .

If τ , τ_1 has a common symbol then $\tau \tau_1$ is a 3-cycle. If τ and τ_1 are disjoint, say $\tau = (1\ 2)$ and $\tau_1 = (3\ 4)$ then, since $n \geq 5$, taking $(1\ 5)$ we have $(1\ 5)\tau\tau_1(1\ 5)^{-1} \in$ N, i.e., $(1\ 5)(1\ 2)(3\ 4)(1\ 5)$ ∈ N, which shows that $(2\ 5)(3\ 4)$ ∈ N. Hence $(1\ 2)(3\ 4)(2\ 5)(3\ 4) \in N$, i.e., $(1\ 2\ 5) \in N$. Hence in any case N contains a 3-cycle.

Note that all 3-cycles in S_n are conjugate and hence by normality of N all 3-cycles belong to N. Since for $n \geq 3$, A_n is precisely the product of 3-cycles we have $A_n \subset N$. But there does not any subgroup H such that $A_n \subsetneq H \subsetneq S_n$ and $N \neq S_n$, we must have $N = A_n$. Hence the result.

EXAMPLE. 4.31 The result is not true for $n = 4$. For example The set $N =$ $\{i,(1\ 2)(3\ 4),(2\ 3)(1\ 4),(1\ 3)(2\ 4)\}\;$ is a proper normal subgroup of S_4 which is different from A_4 .

DEFINITION. 4.32 A group G is called a *simple group* if has no proper non-trivial subgroup.

We may recall that for a subset S of a group G the normalizer of S is the set $N_G(S) = \{g \in G : gSg^{-1} \subset S\}.$ It can also be remembered that $N_G(S)$ is a subgroup of G and if S is a subgroup of G then $N_G(S)$ is the largest subgroup of G in which S is normal.

EXAMPLE. 4.33 The number of k-cycles in S_n is $(k-1)! \binom{n}{k}$ $\binom{n}{k} = \frac{n!}{k(n-1)!}$ $k(n-k)!$

The number of k elements subsets of $\{1, 2, \ldots, n\}$ is $\binom{n}{k}$ $\binom{n}{k}$. A k element set $\{i_1, i_2, \ldots, i_k\}$ can form k! number of k-cycles. Any k-cycle $(i_1 i_2 \ldots i_k)$ has k number of representations, as $(i_1 i_2 \ldots i_k) = (i_2 i_3 \ldots i_k i_1) \ldots (i_k i_1 \ldots i_{k-1})$. Hence the number of distinct k-cycles generated from the k-element set $\{i_1, i_2, \ldots, i_k\}$ is $\frac{k!}{k} = (k-1)!$. Thus the number of k-cycles is $(k-1)! \binom{n}{k}$ $\binom{n}{k} = \frac{n!}{k(n-k)!}.$

THEOREM. 4.34 A_5 is a simple group of order 60.

PROOF. If possible suppose that there are normal subgroups of A_5 other than A_5 and $\{i\}$. Let us take a normal subgroup N of A_5 with smallest order > 1 . Consider the normalizer $T = \{ \sigma \in S_5 : \sigma N \sigma^{-1} \subset N \}$ of N in S_5 . Then T is a subgroup of S_5 and N is a normal subgroup of T. Since N is a normal subgroup of A_5 , for $\sigma \in A_5$, $\sigma N \sigma^{-1} \subset N$ and hence $\sigma \in T$. Thus $A_5 \subset T$.

Now, $T \neq A_5 \Rightarrow T = S_5$ (since there is no subgroup between A_5 and S_5) \Rightarrow N is normal in $S_5 \Rightarrow N = A_5$ — contradiction of our assumption. Hence we have $T = A_5.$

Consider the transposition (1 2) and $M = (1\ 2)N(1\ 2)^{-1}$. Since $(1\ 2) \notin A_5 = T$, we have $N \neq M$. Also $(1\ 2)M(1\ 2)^{-1} = N$ and hence M is a normal subgroup of A₅. This implies that MN and M ∩ N are normal subgroups of A_n . Since N is of minimal order and $M \neq N$ we must have $M \cap N = \{i\}$. Also $|M| = |N|$.

Now, $(1\ 2)MN(1\ 2)^{-1} = (1\ 2)M(1\ 2)(1\ 2)^{-1}N(1\ 2)^{-1} = NM = MN$ (since M, N are normal and $M \cap N = \{i\}$, thus (1 2) is in the normalizer of MN in S_5 . Since MN is normal in A_5 it follows that $MN = A_5$ (as shown in the case of T).

Thus $|A_5| = |MN| = |N|^2$ — which is a contradiction as $|A_5| = 60$ is not a square of any integer. Hence A_5 is a simple group.

THEOREM. 4.35 A_6 is a simple group.

PROOF. Since $|A_6| = \frac{6!}{2} = 360$, which is not a square of any integer, by the arguments similar to the one adopted in the proof for the case of A_5 , one can conclude that A_6 is simple.

It can be noted that for $1 < m < n$, any $\sigma \in S_m$ can be treated as a member of S_n , from which we can conclude that S_n contains an isomorphic copy of S_m .

THEOREM. 4.36 For $n \geq 6$, A_n is a simple group.

PROOF. As in the case for $n = 5, 6$ the result has been proved. Assume that $n > 6$. Let $N \triangleleft A_n$, $N \neq A_n$, $N \neq \{i\}$. Choose $\sigma \in N$, $\sigma \neq i$. Since $Z(S_n) = \{i\}$ and A_n is

generated by 3-cycles, there exists $\tau \in A_n$ such that $\sigma \tau \neq \tau \sigma$, i.e., $\tau \sigma \tau^{-1} \sigma^{-1} \neq \{i\}$. Now, $\tau \sigma \tau^{-1} \in N$ and $\sigma^{-1} \in N$ implies that $\tau \sigma \tau^{-1} \sigma^{-1} \in N$. Also $\sigma \tau^{-1} \sigma^{-1}$, being a conjugate to a 3-cycle, is a 3-cycle. Hence $\tau \sigma \tau^{-1} \sigma^{-1}$ is a product of two three cycles, non-idetity and belongs to N.

Since $n \geq 6$ the element $\tau \sigma \tau^{-1} \sigma^{-1}$ can contain at most six symbols and hence can be considered as an element of A_6 . Aslo A_n contains an isomorphic copy of A_6 . Thus $\tau \sigma \tau^{-1} \sigma^{-1}$ is a non-identity element of $N \cap A_6$ which is a normal subgroup of A_6 . By simplicity of A_6 we have $N \cap A_6 = A_6$. Thus N contains a 3-cycle. Since all the three cycles are conjugate in A_n and N is normal subgroup of A_n it follows that all the three cycles in S_n are in N. A_n is generated by 3-cycles and hence $A_n \subset N$. Consequently $A_n = N$.