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University Syllabus

Unit 1: Automorphism, inner automorphism, automorphism groups. Automorphism
groups of finite and infinite cyclic groups, applications of factor groups to automor-
phism groups, Characteristic subgroups, Commutator subgroup and its properties.

Unit 2 : Properties of external direct products, the group of units modulo n as an
external direct product, internal direct products, Fundamental Theorem of finite
abelian groups.

Unit 3 : Group actions, stabilizers and kernels, permutation representation associated
with a given group action. Applications of group actions. Generalized Cayley’s
theorem. Index theorem.

Unit 4 : Groups acting on themselves by conjugation, class equation and consequences,
conjugacy in Sn, p-groups, Sylow’s theorems and consequences, Cauchy’s theorem,
Simplicity of An for n ≥ 5, non-simplicity tests.

0 Review of the previous study

In this section we recall some definitions state some results without proof from what

we have already studied.

Definition. 0.1 Let (G, ·) and (G′, ∗) be two groups, a function ϕ : G → G′ is

called a group homomorphism if for all a, b ∈ G, ϕ(a · b) = ϕ(a) ∗ ϕ(b).

If ϕ : G → G′ is an injective group homorphism then it is called a monomorphism.

If ϕ is bijective it is called an isomorphism and in this case the groups G and G′ are

called isomorphic.

When we are not so formal and do not mention the group operations we simply

write it as ϕ(ab) = ϕ(a)ϕ(b). However we always remember the fact that in left

hand side ab means a · b, i.e., the operation in group (G, ·) and in right hand side
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ϕ(a)ϕ(b) means ϕ(a) ∗ ϕ(b), i.e., the operation in the group (G′, ∗). Henceforth by a

homomorphism we shall mean a group homomorphism.

Theorem. 0.2 Let ϕ : G → G′ be a homomorphism. Then

1. If e, e′ are the identity elements of G and G′ respectively then ϕ(e) = e′.

2. For any a ∈ G, ϕ(a−1) = (ϕ(a))−1.

3. If H is a subgroup of G then H ′ = ϕ(H) = {ϕ(h) : h ∈ H} is a subgroup of

G′.

4. If K ′ is a subgroup of G′ then K = ϕ−1(K ′) = {h ∈ G : ϕ(h) ∈ K ′} is a

subgroup of G.

Definition. 0.3 A subgroup H of a group G is called a normal subgroup if for all

g ∈ G for all h ∈ H, ghg−1 ∈ H. In symbol it is written as gHg−1 ⊂ H for all

g ∈ G, where gHg−1 = {ghg−1 : h ∈ H}.

When G is an abelian group then every subgroup of G is a normal subgroup.

Definition. 0.4 LetG be a group andH be a subgroup ofG. For any a ∈ G the set

aH = {ah : h ∈ H} is called a left coset of H. Similarly the set Ha = {ha : h ∈ H}
is a right coset of H.

Theorem. 0.5 If H is a normal subgroup of G then for any a ∈ G, aH = Ha, i.e.,

the left coset and the right coset of a normal group are the same.

In view of the above theorem we shall not distinguish between the left cosets and

right cosets of a normal subgroup and say only cosets.

Theorem. 0.6 If H is a normal subgroup of a group G then the set of all cosets

of H, denoted by G/H, form a group under the operation (aH)(bH) = abH for all

aH, bH ∈ G/H. This group is called the factor group or quotient group.

Theorem. 0.7 If G,G′ are groups and ϕ : G → G′ is a homomorphism then the

kernel of ϕ defined by kerϕ = {x ∈ G : ϕ(x) = e′}, where e′ is the identity element

of G′, is a normal subgroup of G.

Theorem. 0.8 If ϕ : G → G′ is a homomorphism of groups then G/ kerϕ is a

group and is isomorphic to ϕ(G).

In the above theorem if ϕ is onto G′ then G/ kerϕ is isomorphic to G′. If kerϕ = H,

for a ∈ G, aH 7→ ϕ(a) is the isomorphism of G/H onto G′.
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0.1 Exercise

1. For n ∈ N show that (Zn,+) is a commutative group, where the addition is

modulo n.

2. Write down the composition table of (Z2,+).

3. Show that Sn, the set of all permutations on the set {1, 2, . . . , n} is a group

with respect to composition of functions. Is it commutative? support your

answer.

4. Verify which of the following functions are homomorphisms and find the kernels

of each homomorphism:

(a) ϕ : Z6 → Z2, where ϕ(n) = the remainder when n is divided by 2.

(b) ϕ : Z9 → Z2, where ϕ(n) = the remainder when n is divided by 2.

(c) ϕ : S3 → Z2 defined by ϕ(σ) = 0 if σ is an even permutation, and

ϕ(σ) = 1 if σ is an odd permutation.

(d) ϕ : Mn → R defined by ϕ(A) = |A|, where Mn denotes the additive group

of all n × n real matrices and for A ∈ Mn, |A| denotes the determinant

of A.

5. Let H be a normal subgroup of a group G, a relation ρH on G is defined by

aρHb iff a−1b ∈ H. Show that ρH is an equivalence relation on G and identify

the equivalence classes.

6. Let p > 1 be an integer, define ϕp : Z → Zp by ϕp(n) = remainder when n is

divided by p. Verify that ϕp is a homomorphism, find the kernel kerϕp and

find the quotient group Z/ kerϕp.



Department of Mathematics, P R Thakur Govt College 4

1 Automorphism

1.1 Definition and elementary properties

Definition. 1.1 An isomorphism from a group G onto itself is called an automor-

phism on G. The set of all automorphisms on a group G is denoted by Aut(G).

Let G be a group and SG denote the set of all bijections from G to G, If G is

finite then SG is nothing but the permutation group of the set G. Thus Aut(G)

is a subset of SG. We know that SG is a group under composition of mappings.

Also composition of two homomorphisms is also a homomorphism and inverse of an

isomorphism is an isomorphism, it follows that Aut(G) is a group under composition

of mappings. Hence the following result follows immediately.

Theorem. 1.2 Aut(G), the set of all automorphisms of a group G is a group under

composition of mappings and is a subgroup of SG.

Definition. 1.3 The group Aut(G) is called the automorphism group of G, where

G is a group.

Theorem. 1.4 Let G be a group. For each g ∈ G define ig : G → G by

ig(x) = gxg−1 for all x ∈ G.

Then ig is an automorphism.

Proof. First, to show that ig is a homomorphism choose x1, x2 ∈ G. Then

ig(x1x2) = g(x1x2)g
−1 = g(x1ex2)g

−1 = (gx1)(g
−1g)(x2g

−1) = (gx1g
−1)(gx2g

−1) =

ig(x1)ig(x2). Hence ig is a homomorphism.

To show that ig is one-one, take x1, x2 ∈ G such that ig(x1) = ig(x2). Then gx1g
−1 =

gx2g
−1, by cancellation law we have x1 = x2.

Finally, for y ∈ G take x = g−1yg. Then ig(x) = gxg−1 = g(g−1yg)g−1 =

(gg−1)y(gg−1) = y. This ig is onto. Hence ig : G → G is an isomorphism, i.e.,

ig is an automorphism on G. ■

Definition. 1.5 Let G be a group, for g ∈ G the automorphism ig is called an

inner automorphism. The set of all inner automorphisms of G is denoted by Inn(G).
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Theorem. 1.6 For a group G, Inn(G) is a subgroup of Aut(G).

Proof. Take ig, ih ∈ Inn(G) where g, h ∈ G. Then for x ∈ G, ig◦ih(x) = ig(ih(x)) =

ig(hxh
−1) = g(hxh−1)g−1 = (gh)x(h−1g−1) = (gh)x(gh)−1 = igh(x). Since this is

true for all x ∈ G it follows that ig ◦ ih = igh and since igh ∈ Inn(G) it follows that

ig ◦ ih ∈ Inn(G). Thus Inn(G) is closed under composition of mappings.

Also for ig ∈ Inn(G) and for x ∈ G, ig(x) = y ⇒ gxg−1 = y ⇒ x = g−1yg ⇒ x =

ig−1(y). Hence i−1
g = ig−1 and hence i−1

g ∈ Inn(G).

Thus Inn(G) is a subgroup of Aut(G). ■

We have already studied centralizer and center of a group in our previous classes.

However we recall the definition and a few elementary properties without proof.

Definition. 1.7 Let G be a group and A be a non-empty subset of G. Then the set

{g ∈ G : gag−1 = a ∀a ∈ A} is called the centralizer of the set A and is denoted by

CG(A). When A = {a} is a singleton set, instead of CG({a}), we write its centralizer
as CG(a), or simply by C(a) when no confusion about G may arise.

It can be noted that for a ∈ A and g ∈ G, gag−1 = a is true if and only if ga = ag.

Thus the centralizer of a set A is actually those elements of G which commute with

every member of A.

Theorem. 1.8 The centralizer of a subset of a group is a subgroup of that group.

Definition. 1.9 The center of a group G is the set of all those members of G which

commute with every member of G and is denoted by Z(G). Thus Z(G) = {x ∈ G :

xg = gx ∀g ∈ G}.

It can be observed that Z(G) is nothing but the centralizer of the whole group G,

i.e., Z(G) = CG(G). Since centralizer of a subset of G is a subgroup of G as a

particular case we can conclude immediately that Z(G) is a subgroup of G. More

precisely, one can prove that

Theorem. 1.10 For a group G, Z(G) is a normal subgroup of G.

Theorem. 1.11 Let G be a group, the function ϕ : G → Aut(G), defined by ϕ(g) =

ig for all g ∈ G, is a homomorphism. The image Im(ϕ) = Inn(G) and the kernel is

kerϕ = Z(G), the center of G.



Department of Mathematics, P R Thakur Govt College 6

Proof. For g, h ∈ G, ϕ(gh) = igh = ig ◦ ih (already verified) = ϕ(g) ◦ ϕ(h). Hence
ϕ is a homomorphism of G into Aut(G). Since for g ∈ G, ϕ(g) = ig, is an inner

automorphism, ϕ(G) ⊂ Inn(G). To show that Im(ϕ) = Inn(G) take ig ∈ Inn(G),

since ϕ(g) = ig it follows that ϕ is onto Inn(G). Thus Im(ϕ) = Inn(G).

For the last part, let g ∈ kerϕ. Then ϕ(g) = i, the identity mapping of G which is

the identity element of Aut(G). Then

ig(x) = i(x) for all x ∈ G

⇒ gxg−1 = x for all x ∈ G

⇒ gx = xg for all x ∈ G

⇒ g ∈ Z(G).

Thus kerϕ ⊂ Z(G). On the other hand

g ∈ Z(G) ⇒ gx = xg for all x ∈ G

⇒ gxg−1 = x for all x ∈ G

⇒ ig(x) = x for all x ∈ G

⇒ ig = i ⇒ ϕ(g) = i,

i.e., g ∈ kerϕ. Thus Z(G) ⊂ kerϕ. Hence kerϕ = Z(G). ■

Theorem. 1.12 For a group G, G/Z(G) ≃ Inn(G).

Proof. This result follows from the previous theorem and the First Isomorphism

Theorem. ■

We know there is only one (up to isomorphism) infinite cyclic group (Z,+) and the

only non-zero homomorphisms from Z to Z are of the type a 7→ na where n ∈ Z.
The map a 7→ na is onto if and only if n = 1, i.e., the identity map. Hence the only

automorphism from Z to Z is the identity map, in other words we have Aut(Z) = {i},
where i denotes the identity map.

We now try to find Aut(G) where G is a finite cyclic group. Recall that Z/nZ = Zn is

the additive group of integers modulo n whose elements are (0), (1), (2), . . . , (n− 1).

Note that Zn is also a commutative ring, known as residue class ring modulo n. An

element (k) of Zn is called an unit if there exists (l) ∈ Zn such that (k)(l) = (1),

i.e., if (k) has a multiplicative inverse in Zn. Note that the element (k) is a unit if

and only if gcd(k, n) = 1 and hence the number of units of Zn is ϕ(n). The set of all

the units of Zn is denoted by Un. Un forms an abelian group under multiplication

(modulo n) and is denoted by (Z/nZ)×. However we shall write it as (Un, ·).
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Theorem. 1.13 If G is a cyclic group of order n then its automorphism group

Aut(G) is isomorphic to (Un, ·).

Proof. Let x be a generator of G, i.e., G = ⟨x⟩. Since |G| = n we have |x| = n

and G = {1, x, x2, . . . , xn−1}. If f ∈ Aut(G) then there exists k ∈ {0, 1, . . . , n − 1}
such that f(x) = xk. Note that this k uniquely determines f and hence we can

write f = fk. Now fk being an automorphism and x being a generator of G we have

fk(x) = xk is also a generator of G, and hence x and xk have the same order n. This

is true if and only if gcd(n, k) = 1, i.e., if and only if (k) ∈ Un.

Define a map Ψ : Aut(G) → Un as follows: Ψ(fk) = (k) for all fk ∈ Aut(G). First

note that Ψ is onto, since for each (k) ∈ Un, Ψ(fk) = (k). To prove that Ψ is a

homomorphism, take fk, fl ∈ Aut(G). Then (fk ◦ fl)(x) = fk(fl(x)) = fk(x
l) =

(xl)k = xkl = xm = fm(x), where kl ≡ m (mod n). Hence Ψ(fk ◦ fl) = (m) = (kl) =

(k)(l) = Ψ(fk)Ψ(fl). Finally, to check that Ψ is injective take fk, fl ∈ Aut(G). Then

Ψ(fk) = Ψ(fl) ⇐⇒ (k) = (l). Hence Ψ : Aut(G) → (Un, ·) is an isomorphism. ■

1.2 Characteristic subgroups and Commutator Subgroups

A subgroup N of a group G is a normal subgroup if gNg−1 ⊂ N for all g ∈ G. As the

inequality gNg−1 ⊂ N for all g ∈ G implies the reverse inequality N ⊂ gNg−1 = N

for all g ∈ G, it follows that N is a normal subgroup if and only if gNg−1 = N

for all g ∈ G. Considering the inner automorphism ig for g ∈ G we can see that

a subgroup N of G is a normal subgroup if and only if ig(N) ⊂ N for all g ∈ G,

where ig(N) = {ig(x) : x ∈ N}. Now replacing inner automorphism with any

automorphism we get a class of subgroups stronger than normal subgroups.

Definition. 1.14 A subgroup H of a group G is called a Characteristic subgroup

of G or Characteristic in G if ϕ(H) ⊂ H for every automorphism ϕ on G. If H is a

Characteristic subgroup of G it is denoted by H char G.

Theorem. 1.15 A Characteristic subgroup is always a normal subgroup.

Proof. This immediate follows as ig is an automorphism for all g ∈ G. ■

Recall that N ◁ G means N is a normal subgroup of G. The following example

shows that if N ′ ◁ N and N ◁ G then it does not follows that N ′ ◁ G, i.e.,

transitivity of normality does not hold.

Example. 1.16 Let G = D4 the dihedral group of all the symmetric transforma-

tions of a square generated by the rotation r by 90◦ about its centre and flip s about
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the vertical line through the center. The elements of D4 are 1, r, r
2, r3, s, rs, r2s, r3s.

Let N = {1, s, r2, r2s} and N ′ = {1, s}. Note that N ′ < N < G. Also, since |G|
|N | = 2

and |N |
N ′| = 2 it follows that N ′ ◁ N and N ◁ G. But N ′ is not a normal subgroup

of G, since for r ∈ G, s ∈ N ′, rsr−1 ̸∈ N ′.

The transitivity of characteristic subgroups hold.

Theorem. 1.17 If G is a group, H,K are subgroups of G such that K char H and

H char G. Then K char G.

Proof. Let ϕ ∈ Aut(G). Then, since H char G, we have ϕ(H) = H and hence ϕH ,

the restriction of ϕ on H, is an automorphism of H. Since K char H, ϕH(K) = K.

But ϕH(K) = ϕ(K) and hence ϕ(K) = K. Since ϕ has been chosen arbitrarily in

Aut(G) it follows that K char G. ■

Theorem. 1.18 For a group G the center Z(G) of G is Characteristic in G.

Proof. Note that Z(G) = {x ∈ G : xg = gx ∀g ∈ G}. Let ϕ ∈ Aut(G), then we

have to show that ϕ(Z(G)) ⊂ Z(G). Let us choose x ∈ Z(G). For g ∈ G since ϕ is

an automorphism on G there exists h ∈ G such that g = ϕ(h). Then

ϕ(x)g = ϕ(x)ϕ(h) = ϕ(xh)

= ϕ(hx) (since x ∈ Z(G))

= ϕ(h)ϕ(x) = gϕ(x).

This shows that ϕ(x) ∈ Z(G). Since x has been chosen arbitrarily in Z(G) it

follows that ϕ(Z(G)) ⊂ Z(G). ϕ has been chosen arbitrarily in Aut(G), hence

ϕ(Z(G)) ⊂ Z(G)) for all ϕ ∈ Aut(G). Thus Z(G) char G. ■

The following corollary has already been stated without proof (Theorem 1.10).

Corollary. 1.19 Z(G) is a normal subgroup of G.

Definition. 1.20 Let G be a group. For x, y ∈ G the element x−1y−1xy is called

commutator of the elements x and y and is denoted by [x, y]. An element z ∈ G is

called a commutator of G if there exists x, y ∈ G such that z = [x, y]. The group

generated by the set of all the commutators of G is called the commutator subgroup

of G.

It immediately follows that for x, y ∈ G, (i) [x, y]−1 = [y, x] and (ii) if f : G → H is

a homomorphism then f([x, y]) = [f(x), f(y)].
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Theorem. 1.21 A group is G abelian if and only if its commutator group is {e},
the trivial subgroup.

Proof. This immediately follows since [x, y] = e for all x, y ∈ G if and only if

x−1y−1xy = e for all x, y ∈ G if and only if xy = yx for all x, y ∈ G. ■

Theorem. 1.22 If ϕ ∈ Aut(G) then for x, y ∈ G, ϕ([x, y]) = [ϕ(x), ϕ(y)].

Proof. Since ϕ is a homomorphism,

ϕ([x, y]) = ϕ(x−1y−1xy) = ϕ(x−1)ϕ(y−1)ϕ(x)ϕ(y)

= (ϕ(x))−1(ϕ(y))−1ϕ(x)ϕ(y) = [ϕ(x), ϕ(y)].

Theorem. 1.23 The commutator subgroup of G is a characteristic subgroup of G

Proof. Let H be the commutator subgroup of G. Choose ϕ ∈ Aut(G), to show

that ϕ(H) ⊂ H. Since H is generated by all the commutators of G it is sufficient to

show that for any commutator x−1y−1xy of G ϕ(x−1y−1xy) is also a commutator.

Since

ϕ(x−1y−1xy) = ϕ(x−1)ϕ(y−1)ϕ(x)ϕ(y)

it follows that ϕ(x−1y−1xy) is the commutator of ϕ(x) and ϕ(y) and hence H is a

characteristic subgroup of G. ■

Theorem. 1.24 For a group G if H is the commutator subgroup of G then the

quotient group G/H is abelian.

Proof. Since H char G, H is a normal subgroup of G and hence the group G/H is

defined. Let us take two left cosets xH, yH in G/H. Then

xHyH = xyH = xy(y−1x−1yx)H (since y−1x−1yx ∈ H)

= (xyy−1x−1)yxH = yxH = yHxH.

Hence G/H is abelian. ■

Theorem. 1.25 Let ϕ : G → G′ be a homomorphism where the group G′ is abelian.

Then the commutator subgroup of G is contained in kerϕ.

Proof. Since the commutator subgroup H is generated by all the commutators of

G it is sufficient to show that all the commutators of G belong to kerϕ. Let us take
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a commutator x−1y−1xy, where x, y ∈ G. Then ϕ(x), ϕ(y) ∈ G′. Since G′ is abelian

we have

ϕ(x)ϕ(y) = ϕ(y)ϕ(x)

⇒ ϕ(x)−1ϕ(y)−1ϕ(x)ϕ(y) = e′, where e′ is the identity element of g′

⇒ ϕ(x−1y−1xy) = e′

⇒ x−1y−1xy ∈ kerϕ.

Hence H ⊂ kerϕ. ■

Theorem. 1.26 If N is a normal subgroup of a group G then G/N is abelian if

and only if the commutator subgroup of G is a normal subgroup of N .

Proof. Let H denote the commutator subgroup of G. Assume that G/N is abelian.

Let ϕ : G → G/N be the natural homomorphism of G onto G/N . Since G/N is

abelian, H ⊂ kerϕ. But kerϕ = N and hence H is a subgroup of N . Since H is a

characteristic subgroup it is a normal subgroup of N .

Conversely, assume that H is a normal subgroup of N , to show that G/N is abelian.

Take xN, yN ∈ G/N . Then

xNyN = xyN = xy(y−1x−1yx)N (since y−1x−1yx ∈ H ⊂ N)

= (xyy−1x−1)yxN = yxN = yNxN.

Thus G/N is an abelian group. ■

1.3 Exercises

1. Let G be an infinite cyclic group. Prove that the group of automorphism of G

is isomorphic to the additive group Z2 of integers modulo 2.

2. Find (i) Aut(Z15) (ii) Aut(Z13) (iii) Aut(Z16) and (iv) Aut(Z30).

3. Write down the composition table of D4 and find Z(D4) and the commutator

subgroup of D4.

4. Write down the composition table of S3 and find Z(S3) and the commutator

subgroup of S3.

5. Let H be a subgroup of a group G. Prove that H ⊂ G′ if and only if H is a

normal subgroup of G and the factor group G/H is Abelian, where G′ denotes

the commutator subgroup of G.
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2 Direct product of groups

2.1 External Direct Product

Definition. 2.1 Let G1, G2, . . . , Gn be n groups. A binary operation · can be

introduced on the product set G1 × G2 × · · · × Gn by the following rule: for

(g1, g2, . . . , gn), (g
′
1, g

′
2, . . . , g

′
n) ∈ G1 ×G2 × · · · ×Gn,

(g1, g2, . . . , gn) · (g′1, g′2, . . . , g′n) = (g1g
′
1, g2g

′
2, . . . , gng

′
n),

where for 1 ≤ i ≤ n, gig
′
i is the composition in the respective group Gi.

With respect to this binary operation the product set G1×G2×· · ·×Gn becomes a

group, called the external direct product of the groups G1, G2, . . . , Gn and is denoted

by G1 ⊕G2 ⊕ · · · ⊕Gn.

It immediately follows that if ei is the identity element of the group Gi, 1 ≤ i ≤ n,

then (e1, e2, . . . , en) is the identity element of the group G1 ⊕G2 ⊕ · · · ⊕Gn.

Example. 2.2 1. Let G1 = Z2 and G2 = Z3, the residue classes of Z modulo

2 and 3 respectively. Then Z2 ⊕ Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.
The composition table is as follows:

· (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)
(0, 0) (0, 0) (0, 1) (0, 1) (1, 0) (1, 1) (1, 2)
(0, 1) (0, 1) (0, 2) (0, 0) (1, 1) (1, 2) (1, 0)
(0, 2) (0, 2) (0, 0) (0, 1) (1, 2) (1, 0) (1, 1)
(1, 0) (1, 0) (1, 1) (1, 2) (0, 0) (0, 1) (0, 2)
(1, 1) (1, 1) (1, 2) (1, 0) (0, 1) (0, 2) (0, 0)
(1, 2) (1, 2) (1, 0) (1, 1) (0, 2) (0, 0) (0, 1)

Note that the composition for the first component is addition modulo 2 whereas

the composition for the second component is addition modulo 3.

2. Recall that for n ∈ N the group of units of Zn is the set Un = {[k] ∈ Zn : 1 ≤
k ≤ n, gcd(k, n) = 1} where is composition is multiplication modulo n. For

example as Z8 = {0, 1, 2, 3, 4, 5, 6, 7}, U8 = {1, 3, 5, 7}. Similarly U6 = {1, 5}.
Then

U6 ⊕ U8 = {(1, 1), (1, 3), (1, 5), (1, 7), (5, 1), (5, 3), (5, 5), (5, 7)}

The composition for the first component is multiplication modulo 6 and for

the second component is multiplication modulo 8. For example (5, 3) · (5, 7) =
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(25, 21) = (1, 5). Similarly (1, 7) · (5, 7) = (5, 49) = (5, 1). The composition

table is given as follows:

· (1, 1) (1, 3) (1, 5) (1, 7) (5, 1) (5, 3) (5, 5) (5, 7)
(1, 1) (1, 1) (1, 3) (1, 5) (1, 7) (5, 1) (5, 3) (5, 5) (5, 7)
(1, 3) (1, 3) (1, 1) (1, 7) (1, 5) (5, 3) (5, 1) (5, 7) (5, 5)
(1, 5) (1, 5) (1, 7) (1, 1) (1, 3) (5, 5) (5, 7) (5, 1) (5, 3)
(1, 7) (1, 7) (1, 5) (1, 3) (1, 1) (5, 7) (5, 5) (5, 3) (5, 1)
(5, 1) (5, 1) (5, 3) (5, 5) (5, 7) (1, 1) (1, 3) (1, 5) (1, 7)
(5, 3) (5, 3) (5, 1) (5, 7) (5, 5) (1, 3) (1, 1) (1, 7) (1, 5)
(5, 5) (5, 5) (5, 7) (5, 1) (5, 3) (1, 5) (1, 7) (1, 1) (1, 3)
(5, 7) (5, 7) (5, 5) (5, 3) (5, 1) (1, 7) (1, 5) (1, 3) (1, 1)

3. In a similar manner U8 ⊕ U12 = {(1, 1), (1, 5), (1, 7), (1, 11), (3, 1), (3, 5), (3, 7),
(3, 11), (5, 1), (5, 5), (5, 7), (5, 11), (7, 1), (7, 5), (7, 7), (7, 11)}. The composition

for the first component is multiplication modulo 8 and for the second compo-

nent is multiplication modulo 12. For example (3, 5)·(5, 7) = (15, 35) = (7, 11).

Similarly, (3, 7) · (7, 11) = (21, 77) = (5, 5).

4. We know R is an additive group. The group R ⊕ R is the Cartesian product

R2 with addition is defined as (x1, y1)+(x2, y2) = (x1+x2, y1+y2), (0, 0) being

the identity element. Similarly taking n copies of R we get the additive group

Rn, where addition is component wise.

Theorem. 2.3 For n finite groups G1, G2, . . . , Gn and for any (a1, a2, . . . , an) ∈
G1 ⊕G2 ⊕ · · · ⊕Gn, the order o(a1, a2, . . . , an) = lcm(o(a1), o(a2), . . . , o(an)).

Proof. Let o(ai) = ki, 1 ≤ i ≤ n, m = lcm(k1, k2, . . . , kn) and k = o(a1, a2, . . . , an).

Then m is a multiple of each ki. Now (a1, a2, . . . , an)
m = (am1 , a

m
2 , . . . , a

m
n ) =

(e1, e2, . . . , en), where ei is the identity element of Gi. So m is a multiple of k,

i.e., k divides m.

On the other hand, (a1, a2, . . . , an)
k = (e1, e2, . . . , en) shows that aki = ei for i =

1, 2, . . . , n, hence k must be a multiple of ki for each i = 1, 2, . . . , n. Thus m divides

k. Hence k = m, i.e., o(a1, a2, . . . , an) = lcm(o(a1), o(a2), . . . , o(an)). ■

It can be observed that the group Z2 ⊕ Z3 is a group of order 6, The group Z6 is

also a group of order 6 which is cyclic. The group Z2 ⊕ Z3 is generated by (1, 1),

for 2(1, 1) = (2, 2) = (0, 2), 3(1, 1) = (3, 3) = (1, 0), 4(1, 1) = (4, 4) = (0, 1), 5(1, 1) =

(5, 5) = (1, 2) and 6(1, 1) = (6, 6) = (0, 0). Thus Z2 ⊕ Z3 is also a cyclic group

of order 6. Since cyclic groups of same order are isomorphic, Z6 and Z2 ⊕ Z3 are

isomorphic.
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The group Z2 ⊕ Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)} is a group of order 4. Note that

order of each element of this group is 2 and hence it can not be a cyclic group.

The following theorem answers the question when the external product of two cyclic

groups is also a cyclic group.

Theorem. 2.4 If G and H are finite cyclic groups then G⊕H is cyclic if and only

if o(G) and o(H) are prime to each other.

Proof. Let G,H be cyclic groups with o(G) = m, o(H) = n. Then o(G⊕H) = mn.

Assume that gcd(m,n) = 1, G = ⟨a⟩ and H = ⟨b⟩. Then o(a) = m and o(b) = n

and hence o(a, b) = lcm(o(a), o(b)) = lcm(m,n) = mn. This shows that (a, b) is a

generator of G⊕H and hence G⊕H is a cyclic group.

Conversely, assume that G ⊕ H is a cyclic group. Let (a, b) be a generator of

G ⊕ H. Note that am = e1 and bn = e2, where e1, e2 are the identity elements

of G and H respectively. If d = gcd(m,n) then d divides both m and n. Now

(a, b)mn/d = (amn/d, bmn/d) = ((am)n/d, (bn)m/d) = (e
n/d
1 , e

m/d
2 ) = (e1, e2). This shows

that o(a, b) ≤ mn
d
, but (a, b) being a generator of G⊕H we must have o(a, b) = mn.

Thus d = 1, i.e., m,n are prime to each other. ■

Corollary. 2.5 For m,n ∈ N, Zm ⊕ Zn ≈ Zmn if and only if m and n are prime

to each other.

This result immediately follows from the fact that Zm, Zn and Zmn are cyclic groups

of order m,n and mn respectively. The next result is extension of the above theorem

to n number of cyclic groups.

Corollary. 2.6 If G1, G2, . . . , Gn are finite cyclic groups of order k1, k2, . . . , kn

respectively, then the external direct product G1⊕G2⊕· · ·⊕Gn is cyclic if and only

if gcd(ki, kj) = 1 for ki ̸= kj, 1 ≤ i, j ≤ n.

When applying this result to the groups Zm, m ∈ N we have,

Corollary. 2.7 For k1, k2, . . . , kn ∈ N, Zk1 ⊕ Zk2 ⊕ · · · ⊕ Zkn ≈ Zk1k2...kn if and

only if gcd(ki, kj) = 1 for ki ̸= kj, 1 ≤ i, j ≤ n.

2.2 Group of units of Zn

Recall that an element x in a ring R with unity is called an unit if it has the

multiplicative inverse, i.e., if there exists y ∈ R such that xy = yx = 1, where 1
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is the unity element of R. The set of all the units of the ring Zn, where n ∈ N, is
denoted by Un. Evidently Un is a group under multiplication modulo n, called the

group of units modulo n.

Definition. 2.8 For n ∈ N if k is a divisor of n then Uk(n) is defined by

Uk(n) = {x ∈ Un : x ≡ 1(mod k)}.

For example, note that U21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}. Then U3(21) =

{1, 4, 10, 13, 16, 19} and U7(21) = {1, 8}.

Theorem. 2.9 If k in a divisor of n then Uk(N) is a subgroup of Un.

Proof. If x, y ∈ Uk(n) then x ≡ 1(mod k) and y ≡ 1(mod k) and hence xy ≡
1(mod k) showing that xy ∈ Uk(n). Also if x ≡ 1(mod k) then k|(x− 1). If y is the

inverse of x in Un then xy ≡ 1(mod n), i.e., n|(xy−1). Since k|n we have k|(xy−1)

and hence k|(xy − 1) − (x − 1), i.e., k|x(y − 1). Since k ̸ |x, we have k|y − 1, i.e.,

y ≡ 1(mod k). Hence y ∈ Uk(n). Thus Uk(n) is a subgroup of Un. ■

Theorem. 2.10 Let p, q are relatively prime numbers. Then Upq ≈ Up⊕Uq. More-

over, Up ≈ Uq(pq) and Uq ≈ Up(pq).

Proof. Define a mapping ϕ : Upq → Up ⊕ Uq by ϕ(x) = (x mod p, x mod q) for all

x ∈ Upq. Then for x, y ∈ Upq, ϕ(x)ϕ(y) = (x mod p, x mod q)(y mod p, y mod q) =

(xy mod p, xy mod q) = ϕ(xy). Thus ϕ is a homomorphism.

Take x, y ∈ Upq such that ϕ(x) = ϕ(y). Then x mod p = y mod p and x mod q =

y mod q. Hence p|(x − y) and q|(x − y) which implies that pq|(x − y), i.e., x ≡
y(mod pq), i.e., x = y in Upq. Thus ϕ is injective.

Finally, if (i, j) ∈ Up ⊕ Uq then gcd(i, p) = 1 = gcd(j, q). Since gcd(p, q) = 1,

gcd(i, pq) = 1 and gcd(j, pq) = 1 and hence gcd(ij, pq) = 1. Thus ij ∈ Upq. Taking

x = ij, ϕ(x) = (x mod p, x mod q) = (i, j). Thus ϕ is onto. ■

2.3 Internal Direct Product

Definition. 2.11 Let H,K be normal subgroups of a group G. Then G is said to

be the internal direct product of H and K if every element g of G can be expressed

uniquely as g = hk where h ∈ H and k ∈ K.
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The number of ways in which an element g ∈ G can be expressed as g = hk, where

h ∈ H and k ∈ K, is the number of elements in H ∩K. Thus the expression g = hk

is unique if and only if H ∩K = {e}, e being the identity element of G.

Definition. 2.12 Let N1, N2, . . . , Nn be normal subgroups of a group G. Then

G is said to be the internal direct product of the subgroups N1, N2, . . . , Nn if every

element g of G can be expressed uniquely as g = g1g2 . . . gn where gi ∈ Ni, 1 ≤ i ≤ n.

Theorem. 2.13 If G is the internal direct product of n normal subgroups N1, N2,

. . . , Nk Then for i ̸= j, 1 ≤ i, j ≤ k, Ni ∩Nj = {e}.

Proof. G = N1N2 · · ·Nk, any element x ∈ G is uniquely represented as x =

n1n2 . . . nk where ni ∈ Ni, 1 ≤ i ≤ k. If a ∈ Ni ∩Nj then a ∈ G can be represented

as a = ee . . . eae . . . e where a ∈ Ni appears in i-th place. The element a ∈ G can

also be represented as a = ee . . . eae . . . e where a ∈ Nj appears in j-th place. Hence

the representation is unique only if a = e. Thus Ni ∩Nj = {e}. ■

It has already been shown that for groups G1, G2, . . . , Gn, the subgroup Ḡi =

{e1, e2, . . . , ei−1, g, ei+1, . . . , en : g ∈ Gi} of G1 ⊕ G2 ⊕ · · · ⊕ Gn is an isomorphic

copy of Gi for 1 ≤ i ≤ n. Also each Ḡi is a normal subgroup. Thus we have the

following result.

Theorem. 2.14 If G = G1 ⊕G2 ⊕ · · · ⊕Gn is the external direct product then G is

the internal direct product of the normal subgroups Ḡ1, Ḡ2, . . . , Ḡn.

Proof. An arbitrary element of G is g = (g1, g2, . . . , gn) where gi ∈ Gi, 1 ≤ i ≤ n.

Then for 1 ≤ i ≤ n, ḡi = (e1, e2, . . . , ei−1, gi, ei+1, . . . , en) ∈ Ḡi and g = ḡ1ḡ2 · · · ḡn.
Since this representation is unique, the result follows. ■

3 Group Action

Definition. 3.1 Let G be a group, X be a set. A function from G × X to X,

(g, x) 7→ g · x, is called a group action if the following conditions hold:

1. e · x = x for all x ∈ X, where e is the identity element of G,

2. g1 · (g2 · x) = (g1g2) · x for all g1, g2 ∈ G for all x ∈ X.

In such a case we say G is acting on X and X is called a G-set.
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Example. 3.2 1. Every group acts on its underlying set, If (G, ∗) is a group

then for g, x ∈ G, g · x = g ∗ x is a group action.

2. Let X be any set, SX denote the permutation group of X and G be any

subgroup of SX . Then for σ ∈ G and x ∈ X, define σ · x = σ(x), then

(σ, x) 7→ σ · x is a group action.

3. In particular, in the above example, if X = {1, 2, 3} and G = {i, σ, ρ} where i

is the identity mapping, σ = (1 2 3) and ρ = (1 3 2), the three-cycles. Then

the group action can be stated in the following tabular form:
1 2 3

i 1 2 3
σ 2 3 1
ρ 3 1 2

4. Consider the group D4, the dihedral group of a square. Let X be the set

{A,B,C,D, p, q}, where A,B,C,D are the four vertices of the square and p, q

are respectively the diagonal AB and CD. for g ∈ D4 the action of g on an

element x in X is the effect of g on X. This is a group action. Note that

D4 = {i, r, r2, r3, s, rs, r2s, r3s}, where r denotes the rotation about the center

by an angle 90◦ in counterclockwise direction and s denotes the flip about the

vertical line through the center.

A B C D p q
i A B C D p q
r B C D A q p
r2 C D A B p q
r3 D A B C q p
s B A D C q p
rs C B A D p q
r2s D C B A q p
r3s A D C B p q

C

B A

D

pq

O

5. Group action on itself by conjugation: Let G be a group, then it acts on its

underlying set G by conjugation as follows: for g ∈ G and x ∈ G, g ·x = gxg−1.

Obviously for e ∈ G and x ∈ G, e ·x = exe−1 = x and got g, h ∈ G and x ∈ G,

h · (g · x) = h · (gxg−1) = h(gxg−1)h−1 = hgx(hg)−1 = (hg) · x.

If X is a G-set then every element of G induces a permutation on the set X.

Theorem. 3.3 Let X be a G-set. Then for all g ∈ G the mapping πg : X → X,

defined by πg(x) = g · x for all x ∈ X, is a permutation on X.
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Proof. For g ∈ G, to show that πg is injective, take x1, x2 ∈ X such that πg(x1) =

πg(x2). Then g ·x1 = g ·x2. Since g
−1 ∈ G, it follows that g−1 · (g ·x1) = g−1 · (g ·x2).

By property of group action, (g−1g) · x1 = (g−1g) · x2, i.e., e · x1 = e · x2 which gives

x1 = x2. Hence πg is one-one.

For y ∈ X take x = πg−1(y) = g−1 ·y. Then πg(x) = g ·x = g · (g−1 ·y) = (gg−1) ·y =

e · y = y. Hence πg is surjective. Thus πg is a bijective map, i.e., a permutation. ■

Theorem. 3.4 Let X be a G-set. Then the mapping ϕ : G → SX , defined by

ϕ(g) = πg for all g ∈ G, is a homomorphism.

Proof. For g1, g2 ∈ G, x ∈ X,

ϕ(g1g2)(x) = πg1g2(x) = (g1g2) · x = g1 · (g2 · x) = g1 · (πg2(x))

= πg1(πg2(x)) = (πg1 ◦ πg2)(x) = (ϕ(g1) ◦ ϕ(g2))(x).

Hence for all g1, g2 ∈ G and for all x ∈ X, ϕ(g1g2)(x) = (ϕ(g1) ◦ ϕ(g2))(x) which

shows that ϕ(g1g2) = ϕ(g1)◦ϕ(g2). This shows that ϕ : G → SX is a homomorphism.

■

Definition. 3.5 Let X be a G-set. The mapping ϕ : G → SX defined by g 7→ πg

for all g ∈ G is called the permutation representation of the group action.

Definition. 3.6 Let a group G act on a set X. Then the set

{g ∈ G : g · x = x for all x ∈ X}

is called the kernel of the group action and is denoted by G0.

It can be observed that if ϕ is the permutation representation of a group action then

the kernel of the group G0 action is the kernel of the homomorphism ϕ.

Definition. 3.7 Let a group G act on a set X. For x ∈ X the stabilizer of x is

the set {g ∈ G : g · x = x}, i.e., the set of the members of G those fix the element

x. The stabilizer of x is denoted by Gx.

A point x ∈ X is called a fixed point of the action if g · x = x for all g ∈ G.

Hence x ∈ X is a fixed point if and only if Gx = G.
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Theorem. 3.8 For a G-set X and for x ∈ X the stabilizer Gx is a subgroup of G.

Proof. Since e ·x = x, e ∈ Gx, thus Gx ̸= ∅. If g, h ∈ Gx then (gh) ·x = g · (h ·x) =
g · x = x hence gh ∈ Gx. Also g · x = x ⇒ g−1 · (g · x) = g−1 · x ⇒ (g−1g) · x =

g−1 · x ⇒ x = g−1 · x showing that g−1 ∈ Gx. Hence Gx is a subgroup of G. ■

Corollary. 3.9 Kernel of a group action is a normal subgroup.

Proof. If G acts on X then kernel G0 = ∩{Gx : x ∈ X} which is the intersection

of a family of subgroups of G, hence is a subgroup of G. Also for g ∈ G, h ∈ G0 and

x ∈ X, (ghg−1) · x = g · (h · (g−1 · x)) = g · (g−1 · x) (since h ∈ G0) = (gg−1) · x = x

which shows that ghg−1 ∈ G0. Thus G0 is a normal subgroup.

Alternatively, we can say that G0 = kerϕ, where ϕ : G → SX is the permutation

representation of the group action, which is a homomorphism. Hence G0 = kerϕ is

a normal subgroup. ■

Theorem. 3.10 If a group G acts on X, then for any x ∈ X and any g ∈ G,

Gg·x = gGxg
−1.

Proof. For h ∈ G,

h ∈ Gg·x ⇐⇒ h · (g · x) = g · x ⇐⇒ (hg) · x = g · x

⇐⇒ g−1 · ((hg) · x) = g−1(g · x)

⇐⇒ (g−1hg) · x = (g−1g) · x = x

⇐⇒ g−1hg ∈ Gx ⇐⇒ h ∈ gGxg
−1.

Hence the result. ■

Example. 3.11 Let G = D4, X = {A,B,C,D, p, q, O}, A,B,C,D are four ver-

tices, O is the centre and p, q are the diagonals of the square. The action of G on

X is the effect of the members of G on the members of X. It can be observed that

the kernel of this action is {i}. We can also find the stabilizers from the table, for

example, GA = GC = {i, r3s}, Gp = {i, r2, rs, r3s}, GO = G etc.

Definition. 3.12 A group action is called a faithful if its kernel consists of only

the identity element.

It follows immediately that a group action is faithful if and only if different elements

of G act differently on the elements of X, i.e., for g, h ∈ G there exists x ∈ X such

that g · x ̸= h · x. Equivalently, the action is faithful if and only the permutation

representation ϕ : G → SX is injective.
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Proposition. 3.13 Let X be a G-set. The relation ∼ on X, defined by for all

x, y ∈ X, x ∼ y if and only if there exists g ∈ G such that g · x = y, is an

equivalence relation on X.

Proof. Since e · x = x, where e is the identity element of G, we have x ∼ x.

Thus ∼ is reflexive. Also for x, y ∈ X, x ∼ y ⇒ ∃g ∈ G such that g · x = y

⇒ g−1 · (g ·x) = g−1 ·y ⇒ (g−1g) ·x = g−1 ·y ⇒ e ·x = g−1 ·y ⇒ x = g−1 ·y ⇒ y ∼ x.

Thus ∼ is symmetric. Finally, for x, y, z ∈ X let x ∼ y and y ∼ z. Then there exist

g1, g2 ∈ G such that y = g1 · x and z = g2 · y. Hence z = g2 · (g1 · x) = (g2g1) · x
showing that x ∼ z. Thus ∼ is transitive. Hence ∼ is an equivalence relation. ■

Definition. 3.14 Let X be a G-set. The equivalence classes related to the action

of G on X are called the orbits of the action. The orbit containing the element x is

denoted by O(x).

The orbits on X form a partition of X. For a fixed point x ∈ X, O(x) = {x}.

Theorem. 3.15 (Orbit-Stabilizer Theorem) Let a finite group G act on a set

X. Then for x ∈ X, |O(x)| = [G : Gx], i.e., the number of elements in the orbit of

x is the index of the stabilizer of x in G.

Proof. Note that if y ∈ O(x) then there exists g ∈ G such that y = g · x. Define a
mapping f : O(x) → G/Gx by f(y) = gGx for all y = gx ∈ O(x). (Here we do not

require Gx to be a normal subgroup of G, we are considering just the set of left cosets

of Gx in G.) If y, z ∈ O(x) then there exist g, h ∈ G such that y = g · x, z = h · x.
Then,

f(y) = f(z) ⇒ gGx = hGx ⇒ h−1g ∈ Gx ⇒ (h−1g) · x = x

⇒ h · (h−1 · (g · x)) = h · x ⇒ g · x = h · x ⇒ y = z.

Thus f is injective. Also for gGx ∈ G/Gx, if y = g · x then f(y) = gGx. Thus f is

surjective. Hence f is a bijection.

Thus |O(x)| = |G/Gx|. Since [G : Gx] = |G/Gx| = |G|
|Gx| , the result follows. ■

Corollary. 3.16 Let a finite group act on a finite set X. If the disjoint orbits are

represented by the elements x1, x2, . . . , xk then

|X| =
k∑

i=1

|O(xi)| =
k∑

i=1

[G : Gxi
].



Department of Mathematics, P R Thakur Govt College 20

Proof. First part follows from the fact that X =
⋃k

i=1 O(xi) and for i ̸= j, 1 ≤ i <

j ≤ k, O(xi)∩O(xj) = ∅. The Second part follows from |O(xi)| = [G : Gxi
] = |G|

|Gxi |
.

Definition. 3.17 An action of a group G on a set X is called transitive if there is

only one orbit. That is, for any two elements x, y ∈ X, there is a g ∈ G such that

g · x = y. A subgroup of SX is called transitive if it acts transitively on X.

Example. 3.18 Let X = {1, 2, 3} and G = S3. Then G acts on X as the effect of

the members of S3 on the elements ofX. IfG = {i, σ, ρ, f, g, h} where i is the identity
mapping, σ = (1 2 3), ρ = (1 3 2), the three cycles and f = (1 2), g = (3 1), h = (2 3),

the transpositions. The action can be viewed in the following table:

1 2 3
i 1 2 3
σ 2 3 1
ρ 3 1 2
f 2 1 3
g 3 2 1
h 1 3 2

Here it can be observed that O(1) = O(2) = O(3) = X, hence the action is

transitive. It can also be observed that the subgroup A3 = {i, σ, ρ} acts transitively

on X and hence S3 and A3 are transitive subgroups of S3. The subgroup H =

{i, f} is not transitive since O(1) = {1, 2} = O(2) and O(3) = {3}. Similarly the

subgroups {i, g} and {i, h} are not transitive subgroups.

4 Sylow’s Theorem

4.1 Group action by conjugacy

Definition. 4.1 Let G be a group. Two elements x, y ∈ G are called conjugate if

there exists an element g ∈ G such that y = gxg−1.

The relation of being conjugate is an equivalence relation on G, the equivalence

classes are called the conjugacy classes. Thus for x ∈ G the conjugate class of x is

Cl(x) = {y ∈ G : ∃g ∈ G s.t. y = gxg−1} = {gxg−1 : g ∈ G}.

We recall the following definition.

Definition. 4.2 The conjugacy defines a group action on itself as follows: for

g ∈ G and x ∈ G define g · x = gxg−1. We call it as group acts on itself by

conjugation.
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It follows immediately from definition that

1. For x ∈ G the orbit of x is O(x) = Cl(x), the conjugacy class of x.

2. When x ∈ Z(G), the center of G, then gx = xg for all g ∈ G. Hence the orbit

of x is given by O(x) = {y ∈ G : ∃g ∈ G s.t. y = gxg−1}. But as gxg−1 = x

we have O(x) = Cl(x) = {x}.

3. For any x ∈ G the stabilizer of x with respect to this particular group action

is Gx = {g ∈ G : g · x = x} = {g ∈ G : gxg−1 = x} = {g ∈ G : gx = xg} =

CG(x), the centralizer of x.

Theorem. 4.3 (The Class Equation) Suppose that a finite group G acts on

itself by conjugation. If x1, x2, . . . , xn be the representatives of the distinct non-

trivial orbits, then

|G| = |Z(G)|+
n∑

i=1

|G|/|Gxi
|

Proof. Note that as the orbits form a partition on G,

G =
⋃

{O(x) : x ∈ distinct orbits}.

Since for x ∈ Z(G), O(x) = {x} it follows that

G = Z(G) ∪ {O(x) : x ∈ {x1, x2, . . . , xn}}.

Since distinct orbits are disjoint it follows that

|G| = |Z(G)|+
n∑

i=1

|O(xi)|.

By Orbit-Stabilizer Theorem we have |O(xi)| = [G : Gxi
] = |G|

|Gxi |
, hence

|G| = |Z(G)|+
n∑

i=1

|G|
|Gx|

.

Hence the result. ■

Theorem. 4.4 If p is a prime number and G be a group of order pk for some k ≥ 1

then Z(G) is non-trivial.

Proof. By class equation we have |G| = |Z(G)| +
∑

x in distinct orbits[G : Gx].

Since for each x ̸∈ Z(G), Gx is a subgroup of G, |Gx| divides |G| = pk, we have

|Gx| = pj for some 1 ≤ j < k. Hence p divides [G : Gx] for each x ∈ G \Z(G). Also

p divides |G|. Thus, p divides |Z(G)|. This shows that Z(G) is non-trivial. ■
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Corollary. 4.5 If p is a prime number then any group of p2 is abelian. Moreover

G is either isomorphic to Zp2 or isomorphic to Zp × Zp.

Proof. By class equation Z(G) is nontrivial. Since |Z(G)| divides |G| and |G| = p2

we have either |Z(G)| = p2 or |Z(G)| = p.

If Z(G) = p2 then G = Z(G), hence G is abelian.

If |Z(G)| = p choose x ∈ G \Z(G). Then Gx is a subgroup of G. Also g ∈ Z(G) ⇒
gx = xg ⇒ gxg−1 = x ⇒ g · x = x, showing that g ∈ Gx. Hence Z(G) ⫋ Gx as

x ∈ Gx \ Z(G). If Gx = G then g · x = x for all g ∈ G, i.e., gxg−1 = x for all g ∈ G

which implies that x ∈ Z(G) — a contradiction. Hence Gx is a proper subgroup of

G and p = |Z(G)| < |Gx| < |G| = p2 — which is again a contradiction as p is a

prime.

Hence we must have |Z(G)| = p2, i.e., G is abelian.

For the second part, if G contains an element a of order p2 then G = ⟨a⟩, i.e., a
cyclic group of order p2, hence is isomorphic to Zp2 .

Otherwise all non-identity elements of G are of order p. Choose x ∈ G with o(x) = p.

Then ⟨x⟩ is a subgroup of order p. Choose y ∈ G − ⟨x⟩, then ⟨y⟩ is also subgroup

of order p. Also since p = |⟨x⟩| < |⟨x, y⟩| ≤ |G| = p2 we must have |⟨x, y⟩| = p2 and

hence G = ⟨x, y⟩. Now, ⟨x⟩, ⟨y⟩ being cyclic groups of order p we have ⟨x⟩ × ⟨y⟩ is
isomorphic to Zp × Zp.

Define a mapping ϕ : ⟨x⟩×⟨y⟩ → ⟨x, y⟩ by ϕ(xi, yj) = xiyj for all (xi, yj) ∈ ⟨x⟩×⟨y⟩.
It immediately follows that ϕ is an isomorphism and henceG is isomorphic tp Zp×Zp.

■

4.2 Sylow’s Theorem

Recall that for a group G and x ∈ G the centralizer of x is CG(x) = {y ∈ G :

yxy−1 = x}. It has been proved that CG(x) is a subgroup of G. When a group G

acts on itself by conjugacy then the conjugacy class of an element a ∈ G is given

by Cl(x) = {gxg−1 : g ∈ G}. It has also been proved that Cl(x) = O(x), orbit of

x with respect to the group action by conjugacy. The following gives the size of a

conjugacy class.

Theorem. 4.6 For a finite group G and x ∈ G, |Cl(x)| = [G : CG(x)].

Proof. By Orbit-Stabilizer Theorem, |O(x)| = [G : Gx]. Since for the group action

by conjugacy O(x) = Cl(x) and Gx = CG(x), the result follows. ■
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It is known from the Lagrange’s Theorem that if G is a group of order n and it has

a subgroup of order m then m divides n. The converse need not be true always, for

example the alternation group A4 is of order 12 has no subgroup of order 6, though 6

divides 12. A sufficient condition is given here for which the converse of Lagrange’s

Theorem holds partially.

We recall a theorem for finite abelian group which will be used to prove the Sylow’s

Theorem.

Theorem. 4.7 If G is a finite abelian group and if p is a prime that divides the

order of G then G has an element of order p.

Proof. The proof will be done by induction on the order of G. If |G| = 2 the result

holds trivially. Let G be a group of order n > 2. If for a proper subgroup H of G,

p divides |H| then by induction hypothesis H has an element of order p — hence

the result is proved. So we assume that for all proper subgroup H of G, p does not

divide |H|.

For a proper subgroup H of G, |G| = |G/H| · |H|. Since p divides |G| and p does

not divide |H| we must have p divides |G/H|. Hence by induction hypothesis G/H

has an element, say aH, of order p. Thus (aH)p = H, or ap ∈ H. If |H| = m

then (ap)m = e, i.e., amp = e hence (am)p = e, where e is the identity element of G.

Taking b = am we can say that b is an element of order p if b ̸= e.

If possible suppose that b = am = e. Then (aH)m = amH = H. Since p and m are

prime to each other, there exist integers x, y such that mx+ py = 1. Then

aH = amx+pyH = (aH)mx(aH)py

= ((aH)m)x((aH)p)y = HxHy = H

this is a contradiction since |aH| = p. Thus, we have b ̸= e and hence b is the

required element of G with order p. ■

Theorem. 4.8 (Sylow’s First Theorem) Let G be a finite group and p be a

prime such that pk divides |G|. Then G has a subgroup of order pk.

Proof. The theorem will be proved by induction on n = |G|. If n = 1 the result

holds trivially. So let us assume that n > 1 and the result holds for all groups of

order less than n.

If G has a proper subgroup H such that pk divides |H| then by induction hypothesis

H has a subgroup of order pk and hence G has a subgroup of order pk, i.e., the
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theorem is proved. So we assume that G has no proper subgroup whose order is

divisible by pk.

Since |G| is divisible by pk it follows that |Z(G)| is divisible by p (Theorem 4.4).

Since Z(G) is an abelian group, Z(G) has an element, say a, of order p. Then

N = ⟨a⟩ is a group of order p. Also since a ∈ Z(G) it follows that N is a normal

subgroup of G. So we may consider the quotient group G/N , whose order is |G|
|N |

which is divisible by pk−1.

By induction hypothesis G/N has a subgroup, say M , of order pk−1. Let ϕ : G →
G/N be the natural homomorphism g 7→ gN for all g ∈ G. Consider the set

H = {g ∈ G : ϕ(g) ∈ M} = ϕ−1(M). Then g1, g2 ∈ H ⇒ g1N, g2N ∈ M ⇒
g1g

−1
2 N ∈ M ⇒ g1g

−1
2 ∈ H. Thus H is a subgroup of G. Hence M = H/N . Since

|M | = pk−1 = |H|
|N | and |N | = p, we have |H| = pk — contradiction that G has no

proper subgroup of order pk.

Hence G must have a proper subgroup of order pk. This completes the proof. ■

Example. 4.9 LetG be a group of order 180. Since 180 = 22325, the above theorem

says that G has subgroups of order 2, 4, 3, 9 and 5. However this theorem can not say

whether G has subgroups of order 6, 10, 12, 15, 18, 20, 30, 45, 60 or 90 even though

each of these number divides 180.

Definition. 4.10 Let G be a finite group and p be a prime. A subgroup of order

p is called a p-subgroup of G. If pk divides |G| and P k+1 does not divide |G| then
a subgroup of order pk of G is called a Sylow p-subgroup of G (also called p-Sylow

subgroup).

For a group of order 180 a subgroup of order 4 is a Sylow 2-subgroup, a subgroup

of order 9 is Sylow 3-subgroup and a subgroup of order 5 is a Sylow 5-subgroup.

However a subgroup of order 3 is a 3-subgroup of G, not a Sylow 3-subgroup.

Definition. 4.11 Two subgroups H,K of a group G are said to be conjugate if

there exists g ∈ G such that H = gKg−1.

Lemma. 4.12 Let H be a p-group, where p is a prime number, S is a finite set and

H acts on S. Let S0 = {s ∈ S : O(s) = {s}} be the collection of all those elements

of S which are fixed by the group action. Then |S| ≡ |S0|(mod p).

Proof. Since the orbits form a partition on S, |S| =
∑

|O(s)|, where summation

is taken over the representatives of all the distinct orbits. S0 being the collection
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of elements of singleton orbits we have |S| = |S0| +
∑

|O(s)|, where summation is

taken over the representatives of non-trivial orbits. By orbit-Stabilizer theorem we

have |O(s)| = |H|/|Hs|, where Hs is the stabilizer of s ∈ S. Since |H| = pk for some

k ≥ 1 and Hs is a subgroup of H, we have |Hs| = pm for some m < k, hence |O(s)|
is divisible by p. Thus |S| ≡ |S0|(mod p). ■

Theorem. 4.13 (Sylow’s Second Theorem) Let G be a finite group and p be

a prime such that pk | |G| but pk+1 ∤ |G|. Then (i) Any p-subgroup of G is contained

in some Sylow p-subgroup of G and (ii) any two Sylow p-subgroups are conjugate.

Proof. (i) LetH be a p-subgroup ofG and P be a Sylow p-subgroup ofG. Take S =

{gP : g ∈ G}, the set of all left cosets of P . Let H act on S by left multiplication:

h · gP = hgP for all h ∈ H, for all gP ∈ S. Let S0 ⊂ S denote the set of fixed

points of the group action, i.e., S0 = {gP ∈ S : h · gP = gP ∀h ∈ H}. Then by the

above lemma we have |S0| ≡ |S|(mod p). Since |S| = |G|
|P | is not divisible by p we

have |S0| ≥ 1. Let gP ∈ S0. Then,

hgP = gP ∀h ∈ H ⇒ g−1hgP = P ∀h ∈ H

⇒ g−1hg ∈ P ∀h ∈ H ⇒ g−1Hg ⊂ P ⇒ H ⊂ gPg−1

Since conjugacy is an automorphism, gPg−1 is also a Sylow p-group and hence H is

contained in a Sylow p-subgroup.

(ii) In particular if H = P1 is another Sylow p-subgroup, then P1 ⊂ gPg−1, but

|P1| = |gPg−1|, and hence P1 = gPg−1. Thus any two Sylow p-subgroups are

conjugate. ■

Theorem. 4.14 (Sylow’s Third Theorem) Let p be a prime and G be a finite

group of order pkm where p ∤ m. If P is a Sylow p-subgroup then (i) the number of

Sylow p-subgroups is np = [G : NG(P )], where NG(P ) is the normalizer of P , (ii)

np divides |G|/|P | and (iii) np ≡ 1(mod p).

Proof. (i) Let S denote the set of all Sylow p-subgroups of G. Let G act on

S by conjugacy operation, g · P = gPg−1 for all g ∈ G and for all P ∈ S. By

Sylow’s Second Theorem for any P ∈ S, O(P ) = S. By Orbit-Stabilizer Theorem

|O(P )| = [G : GP ], where GP is the stabilizer of P .

Since GP = {g ∈ G : g · P = P} = {g ∈ G : gPg−1 = P} = NG(P ) it follows that

np = |S| = |O(P )| = [G : NG(P )]. Hence (i) follows.

(ii) Note that P is a normal subgroup of NG(P ) and NG(P ) is a subgroup of G.
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Also [G : NG(P )] = |G|
|NG(P )| and [NG(P ) : P ] = |NG(P )|

|P | . Hence |G|
|P | = [G : NG(P )] ×

[NG(P ) : P ] = np × [NG(P ) : P ]. This shows that np divides |G|
|P | .

(iii) Let P act on S by conjugacy and S0 denote the set of elements of S fixed by

group action, i.e., S0 = {Q ∈ S : g · Q = Q ∀g ∈ P}. Then for g ∈ P and Q ∈ S0,

gQg−1 = Q which implies that g ∈ NG(Q) and hence P ⊂ NG(Q). By Sylow’s

second Theorem P and Q are conjugate in G and hence in particular conjugate in

NG(Q), also Q is normal in NG(Q), thus P = Q. This shows that S0 = {P}. By

Lemma |S| ≡ |S0|(mod p), i.e., np ≡ 1(mod p). This completes the proof. ■

Corollary. 4.15 For a prime p a finite group G has a unique Sylow p-subgroup

P if and only if P is normal.

Proof. Assume that P is the only Sylow p-subgroup of G. Then for any g ∈ G,

gPg−1 is a Sylow p-subgroup and hence gPg−1 = P . Thus P is normal. Conversely,

Assume that P is normal. If Q is a Sylow p-subgroup then there exists g ∈ G such

that Q = gPg−1 = P . Hence P is the only Sylow p-subgroup of G. ■.

Corollary. 4.16 If p, q are primes, p < q and p ∤ q − 1 then a group G of order

pq is isomorphic to Zpq.

Proof. Let P be a Sylow p-subgroup and Q be a Sylow q-subgroup of G. Then

np ≡ 1(mod p), i.e, np = 1 + kp for some integer k ≥ 0 and np | q. Similarly

nq = 1+ lq for some integer l ≥ 0 and nq | p. Since p < q, nq = 1+ lq | p is possible

only if l = 0, thus nq = 1 and hence Q is a normal subgroup of G.

Since np divides the prime number q, either np = 1 or np = q. Since p ∤ q − 1 and

p | np − 1, np = q is false. Thus np = 1 and hence P is a normal subgroup of G.

P,Q being groups of prime orders p, q respectively, they are cyclic groups. Let

P = ⟨a⟩ and Q = ⟨b⟩. Obviously G = PQ. Since P ∩Q = {e}, G = P ×Q.

Also since P ≈ Zp and Q ≈ Zq we have P ×Q ≈ Zp × Zq ≈ Zpq. ■

Example. 4.17 1. Let us consider a group G of order 40. Since 40 = 235, a

Sylow 2-subgroup is of order 8 and a Sylow 5-subgroup is of order 5.

There are n2 number of Sylow 2-subgroups, then 2 | n2 − 1 and n2 | 40
8
= 5,

i.e., n2 = 2k + 1 | 5. Hence n2 = 1 or 5 (for k = 0 and k = 2). If n2 = 1, the

Sylow 2-subgroup is normal, if n2 = 5 none of the five Sylow 2-subgroups is

normal.
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The number of Sylow 5-subgroups is n5, then 5 | n5 − 1 and n5 | 40
5
= 8, i.e.,

n5 = 5k + 1 | 5. Hence n5 = 1 is the only solution (k = 0), the only Sylow

5-subgroup is normal.

2. How many Sylow p-subgroups of S5 are there?

|S5| = 120 = 23 · 3 · 5. It has Sylow 2-subgroups of order 8, Sylow 3-subgroups

of order 3 and Sylow 5-subgroups of order 5.

The number of Sylow 2-subgroups is n2. So 2 | n2 − 1 and n2 | 120/8 = 15,

i.e., n2 = 2k + 1 | 15. The solutions are n2 = 1, 3, 5 or 15. Note that any four

elements of {1, 2, 3, 4, 5} can form four vertices of a square which generates

D4, the dihedral group of order 4. Since |D4| = 8, D4 is a Sylow 2-subgroup.

The 4 vertices can be arranges in 24 ways, the vertices arranged in same 4-

cycle structure give the same group. (for example, (1 2 3 4) = (2 3 4 1) =

(3 4 1 2) = (4 1 2 3)). Also the vertices interchanges horizontally give the

same group (for example (1 2 3 4) and (2 1 4 3) give same group). Hence

24 arrangements give 3 different groups of order 8. There are 5C4 = 5 ways

to choose 4 elements from {1, 2, 3, 4, 5}. Each choice give 3 different group of

order 8. Hence n2 = 5× 3 = 15.

The number of Sylow 3-subgroups is n3. So n3 = 3k + 1 | 120/3 = 40, i.e.,

n3 = 1, 10 or 40 (for k = 0, 3, 13).

The number of Sylow 5-subgroups is n5. So n5 = 5k + 1 | 120/5 = 24, i.e.,

n5 = 1, 6 are the possibility.

Since a Sylow p-subgroup in A5 is also a Sylow p-subgroup in S5 and A5 is

simple (i.e., it has no proper normal subgroup), in both the cases above n3 = 1

and n5 = 1 are cancelled. Thus, n3 = 10 or 40 and n5 = 6.

An element in S5 has an order is 3 if and only if it is a 3-cycle. The number

of distinct 3-cycles in S5 is 5!
3·2! = 20. Each Sylow 2-subgroup contains 2 non-

identity elements, and hence there can be 20/2 = 10 such groups. Hence

n3 = 10.

3. The possibilities for the number of elements of order 5 in a group of order 100.

100 = 2252, so a group of order 100 can have Sylow 2-subgroups of order 4

and Sylow 5-subgroups of order 25.

n5 = 5k + 1 | 4, the only possibility is k = 0, i.e., n5 = 1. Hence the group

has only one Sylow 5-subgroup P which of order 25. So either P ≈ Z25 or

P ≈ Z5 ⊕ Z5. In former case the elements in Z25 of order 5 are 5̄, 1̄0, 1̄5 and

2̄0, thus P has four elements of order 5. In the later case all the elements of
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Z5 ⊕Z5 other than the identity element are of order 5. Hence in that case the

number of elements of order 5 in P is 24.

4. A group of order 175 is Abelian.

Let G be a Group of order 175. We have 175 = 32 · 52. so the order of Sylow

3-subgroup is 9. The number of Sylow 3-subgroups is n3 = 3k + 1 | 25, hence
n3 = 1 is the only possibility. Also the order of Sylow 5-subgroup is 25. The

number of Sylow 5-subgroup is n5 = 5k + 1 | 9, hence n5 = 1.

Let H,K denote the Sylow 3-subgroup and Sylow 5-subgroup respectively.

Then H,K are normal and |H| = 32, |K| = 52 which imply that both H,K are

Abelian. Each non-identity element of H has order 3 or 9 and each nonidentity

element ofK has order 5 or 25. HenceH∩K = {e}. This Shows thatG = HK.

Since H,K are Abelian, G is Abelian.

4.3 Conjugacy classes in Sn

Proposition. 4.18 For n ≥ 3 the product of two transpositions in Sn is either a

3-cycle or a product of two 3-cycles.

Proof. Let τ1, τ2 be two transpositions in Sn, where n ≥ 3. If τ1 = τ2 then since

τ1 = τ−1
1 we have τ1τ2 = i = (1 2 3)(1 3 2), a product of two 3-cycles.

Assume that τ1 ̸= τ2. Then two cases may arise, (i) either τ1 and τ2 have a common

element or (ii) they are disjoint. For the first case assume that τ1 = (i1 i2) and

τ2 = (i2 i3), then τ1τ2 = (i1 i2 i3) — a 3-cycle. For the second case, let τ1 = (i1 i2)

and τ2 = (i3 i4), then τ1τ2 = (i1 i2)(i3 i4) = (i1 i4 i3)(i1 i2 i3) — a product of two

3-cycles. ■

Proposition. 4.19 For n ≥ 3 every element of the alternating group An is a

product of 3-cycles.

Proof. An element σ ∈ An is a product of an even number of transpositions. Since

product of every pair of transpositioins is either a 3-cycle or a product of two 3-cycles

it follows that σ is a product of 3-cycles. ■

Proposition. 4.20 Let σ, τ ∈ Sn. Then τστ−1 is obtained by replacing the symbol

i in σ by τ(i).

Proof. For i ∈ {1, 2, . . . , n} let σ(i) = j, τ(i) = s and τ(j) = t. Then τστ−1(s) =

τσ(τ−1(s)) = τσ(i) = τ(j) = t. Hence when σ moves i to j then τστ−1 moves s to
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t, i.e., τστ−1 moves τ(i) to τ(j). Hence τστ−1 is obtained by replacing the symbol

i in σ by τ(i). ■

Example. 4.21 Let in S5, σ = (1 5 3 2) and τ = (2 4)(1 5). Then τ(1) = 5, τ(5) =

1, τ(3) = 3 and τ(2) = 4. Thus τστ−1 = (τ(1) τ(5) τ(3) τ(2)) = (5 1 3 4) = (1 3 4 5).

This can be viewed in tabular form also:

σ =

(
1 2 3 4 5
5 1 2 4 3

)
and τ =

(
1 2 3 4 5
5 4 3 2 1

)
, τστ−1 =

(
1 2 3 4 5
3 2 4 5 1

)
.

Example. 4.22 Let σ = (2 3)(4 6 8)(1 5 7 9) and τ = (1 3)(7 9 8)(3 4 6). Then

τστ−1 = (2 4)(6 1 7)(3 5 9 8).

Proposition. 4.23 Two k-cycles in Sn are conjugate.

Proof. Let σ = (i1 i2 . . . ik) and ρ = (j1 j2 . . . jk) be two k-cycles. Take τ ∈ Sn

as follows: τ(i1) = j1, τ(i2) = j2, . . . , τ(ik) = jk. Then τστ−1 = ρ, hence σ and ρ

are conjugate. ■

Proposition. 4.24 Two permutations in Sn are conjugate if and only if they have

the same cycle structure.

Proof. If σ and ρ in Sn have the same cycle structure, then since the cycles of

same length are conjugate and conjugacy is an automorphism it follows that σ and

ρ are conjugate.

Conversely, if σ and ρ are conjugate then ρ = τστ−1 for some τ ∈ Sn. But in this

case ρ is obtained by replacing the entries of σ by their τ images and hence ρ and

σ have the same cycle structure. ■

Definition. 4.25 For n ∈ N, a partition of n is a non-decreasing sequence of

integers n1, n2, . . . , nk whose sum is n, i.e., 0 ≤ n1 ≤ n2 ≤ · · · ≤ nk such that

n1 + n2 + · · ·+ nk = n.

Theorem. 4.26 The number of conjugacy classes in Sn is equal to the number of

partitions of n.

Proof. Let σ ∈ Sn. Arrange the disjoint cycles of σ (including 1-cycles) in non-

decreasing order so that the cycle lengths form a partition of n. Any member ρ ∈ Sn

conjugate to σ has the same cycle structure and hence defines the same partition of

n. Thus a conjugate class defines a unique partition of n. On the other hand, given

any partition of n a permutation can be constreucted having the cycle lengths of



Department of Mathematics, P R Thakur Govt College 30

the partition members. Hence the number of conjugacy classes in Sn is equal to the

number of partitions of n. ■

Example. 4.27 1. Take n = 4. The partitions of 4 are, 4 = 1 + 1 + 1 + 1, 4 =

1 + 1 + 2, 4 = 1 + 3, 4 = 2 + 2, 4 = 4. Hence S4 has five conjugacy classes,

i.e., (1)(2)(3)(4) = i, (1)(2)(3 4) = (3 4), (1)(2 3 4) = (2 3 4), (1 2)(3 4) and

(1 2 3 4).

2. When n = 5, the partitions of 5 and a representative of each conjugate class

are given in the following table. Here the 1-cycles are omitted.

Partition of n Representative of the conjugate class
1+1+1+1+1 i

1+1+1+2 (1 2)
1+1+3 (1 2 3)
1+2+2 (1 2)(3 4)

1+4 (1 2 3 4)
2+3 (1 2)(3 4 5)

5 (1 2 3 4 5)

4.4 simplicity of An

In this section we shall prove that for n ≥ 5 the group An contains no normal

subgroup other than itself and the trivial group.

Proposition. 4.28 For n ≥ 5 any two 3-cycles are conjugate in An.

Proof. Let σ, ρ be two 3-cycles in An. It is known that any two k-cycles in Sn are

conjugate, hence, in particular, the 3-cycles σ, ρ are conjugate in S3.

Without any loss of generality we may assume that σ = (1 2 3), so there exists

τ ∈ S3 such that ρ = τστ−1. If τ ∈ An then σ, ρ become conjugate in An. If

τ ̸∈ An, i.e., τ is an odd permutation, take µ = τ(4 5) so that µ ∈ An. Then

µσµ−1 = τ(4 5)(1 2 3)(4 5)−1τ−1 = τ(4 5)(1 2 3)(4 5)τ−1 = τ(1 2 3)τ−1 = ρ. Thus

σ and ρ are conjugate in An. ■

Lemma. 4.29 For n ≥ 3, Z(Sn) = {i}.

Proof. Let σ ∈ Sn, σ ̸= i. So there exists k ∈ {1, 2, . . . , n} such that σ(k) =

l ̸= k. Since n ≥ 3 choose m ∈ {1, 2, . . . , n} such that m ̸∈ {k, l}. Consider the

transposition τ = (l m). Then τστ−1(k) = τσ(k) = τ(l) = m and σ(k) = l. Hence
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τστ−1(k) ̸= σ(k), which shows that τστ−1 ̸= σ, i.e., τσ ̸= στ . Thus σ ̸∈ Z(Sn) and

hence Z(Sn) = {i}. ■

Theorem. 4.30 For an integer n ≥ 5 the only non-trivial proper normal subgroup

of Sn is An.

Proof. For every n ∈ N, An is a normal subgroup of Sn. To prove for n ≥ 5, An is

the only normal subgroup other than {i} and Sn.

Let N be a normal subgroup of Sn, N ̸= {i} and N ̸= Sn. Take σ ∈ N . Since

Z(Sn) is the trivial subgroup, and members of Sn are products of transpositions

there exists a transposition τ such that στ ̸= τσ, i.e., στσ−1 ̸= τ . Let τ1 = στσ−1,

then τ and τ1 are conjugate and hence τ1 is a transposition.

Since τ = τ−1 and σ ∈ N it follows that ττ1 = τστσ−1 = (τστ−1)σ−1 ∈ N . Hence

N contains a product of two transpositions τ and τ1.

If τ, τ1 has a common symbol then ττ1 is a 3-cycle. If τ and τ1 are disjoint, say

τ = (1 2) and τ1 = (3 4) then, since n ≥ 5, taking (1 5) we have (1 5)ττ1(1 5)−1 ∈
N , i.e., (1 5)(1 2)(3 4)(1 5) ∈ N , which shows that (2 5)(3 4) ∈ N . Hence

(1 2)(3 4)(2 5)(3 4) ∈ N , i.e., (1 2 5) ∈ N . Hence in any case N contains a

3-cycle.

Note that all 3-cycles in Sn are conjugate and hence by normality of N all 3-cycles

belong to N . Since for n ≥ 3, An is precisely the product of 3-cycles we have

An ⊂ N . But there does not any subgroup H such that An ⫋ H ⫋ Sn andN ̸= Sn,

we must have N = An. Hence the result. ■

Example. 4.31 The result is not true for n = 4. For example The set N =

{i, (1 2)(3 4), (2 3)(1 4), (1 3)(2 4)} is a proper normal subgroup of S4 which is

different from A4.

Definition. 4.32 A group G is called a simple group if has no proper non-trivial

subgroup.

We may recall that for a subset S of a group G the normalizer of S is the set

NG(S) = {g ∈ G : gSg−1 ⊂ S}. It can also be remembered that NG(S) is a

subgroup of G and if S is a subgroup of G then NG(S) is the largest subgroup of G

in which S is normal.

Example. 4.33 The number of k-cycles in Sn is (k − 1)!
(
n
k

)
= n!

k(n−k)!



Department of Mathematics, P R Thakur Govt College 32

The number of k elements subsets of {1, 2, . . . , n} is
(
n
k

)
. A k element set {i1, i2, . . . , ik}

can form k! number of k-cycles. Any k-cycle (i1 i2 . . . ik) has k number of repre-

sentations, as (i1 i2 . . . ik) = (i2 i3 . . . ik i1) . . . (1k i1 . . . ik−1). Hence the number

of distinct k-cycles generated from the k-element set {i1, i2, . . . , ik} is k!
k
= (k − 1)!.

Thus the number of k-cycles is (k − 1)!
(
n
k

)
= n!

k(n−k)!
. ■

Theorem. 4.34 A5 is a simple group of order 60.

Proof. If possible suppose that there are normal subgroups of A5 other than A5

and {i}. Let us take a normal subgroup N of A5 with smallest order > 1. Consider

the normalizer T = {σ ∈ S5 : σNσ−1 ⊂ N} of N in S5. Then T is a subgroup of S5

and N is a normal subgroup of T . Since N is a normal subgroup of A5, for σ ∈ A5,

σNσ−1 ⊂ N and hence σ ∈ T . Thus A5 ⊂ T .

Now, T ̸= A5 ⇒ T = S5 (since there is no subgroup between A5 and S5) ⇒ N

is normal in S5 ⇒ N = A5 — contradiction of our assumption. Hence we have

T = A5.

Consider the transposition (1 2) and M = (1 2)N(1 2)−1. Since (1 2) ̸∈ A5 = T ,

we have N ̸= M . Also (1 2)M(1 2)−1 = N and hence M is a normal subgroup of

A5. This implies that MN and M ∩N are normal subgroups of An. Since N is of

minimal order and M ̸= N we must have M ∩N = {i}. Also |M | = |N |.

Now, (1 2)MN(1 2)−1 = (1 2)M(1 2)(1 2)−1N(1 2)−1 = NM = MN (since M,N

are normal and M ∩N = {i}), thus (1 2) is in the normalizer of MN in S5. SInce

MN is normal in A5 it follows that MN = A5 (as shown in the case of T ).

Thus |A5| = |MN | = |N |2 — which is a contradiction as |A5| = 60 is not a square

of any integer. Hence A5 is a simple group. ■

Theorem. 4.35 A6 is a simple group.

Proof. Since |A6| = 6!
2
= 360, which is not a square of any integer, by the arguments

similar to the one adopted in the proof for the case of A5, one can conclude that A6

is simple. ■

It can be noted that for 1 < m < n, any σ ∈ Sm can be treated as a member of Sn,

from which we can conclude that Sn contains an isomorphic copy of Sm.

Theorem. 4.36 For n ≥ 6, An is a simple group.

Proof. As in the case for n = 5, 6 the result has been proved. Assume that n > 6.

Let N ◁ An, N ̸= An, N ̸= {i}. Choose σ ∈ N , σ ̸= i. Since Z(Sn) = {i} and An is
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generated by 3-cycles, there exists τ ∈ An such that στ ̸= τσ, i.e., τστ−1σ−1 ̸= {i}.
Now, τστ−1 ∈ N and σ−1 ∈ N implies that τστ−1σ−1 ∈ N . Also στ−1σ−1, being

a conjugate to a 3-cycle, is a 3-cycle. Hence τστ−1σ−1 is a product of two three

cycles, non-idetity and belongs to N .

Since n ≥ 6 the element τστ−1σ−1 can contain at most six symbols and hence can

be considered as an element of A6. Aslo An contains an isomorphic copy of A6.

Thus τστ−1σ−1 is a non-identity element of N ∩ A6 which is a normal subgroup of

A6. By simplicity of A6 we have N ∩A6 = A6. Thus N contains a 3-cycle. Since all

the three cycles are conjugate in An and N is normal subgroup of An it follows that

all the three cycles in Sn are in N . An is generated by 3-cycles and hence An ⊂ N .

Consequently An = N . ■


