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University Syllabus

Unit-1: Symmetries of a square, Dihedral groups, definition and examples of groups
including permutation groups and quaternion groups (through matrices), elementary
properties of groups.

Unit-2: Subgroups and examples of subgroups, centralizer, normalizer, center of a group,
product of two subgroups.

Unit-3: Properties of cyclic groups, classification of subgroups of cyclic groups, Cycle
notation for permutations, properties of permutations, even and odd permutations,
alternating group, properties of cosets, Lagrange’s theorem and consequences in-
cluding Fermat’s Little theorem.

Unit-4: External direct product of a finite number of groups, normal subgroups, factor
groups, Cauchy’s theorem for finite abelian groups.

Unit-5: Group homomorphisms, properties of homomorphisms, Cayley’s theorem, prop-
erties of isomorphisms, First, Second and Third isomorphism theorems.

1 Definition and Examples

1.1 Symmetric transformations of a square

Before defining groups we look at some examples. Consider a square ABCD in

plane. Apply the following transformation on the square: (1) Rotate the square

anticlockwise about it center by an angle 90◦, denote it by r and (2) flip the square

about a straight line through one of the vertices and the center of the square, denote

it by s. Then what will be the position of the square? let us see it.
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We observe that all possible symmetric positions of the square can be obtained

by applying repeatedly the above mentioned rotation and reflection. It is also ob-

served that there can be exactly eight possible symmetric positions of the square.

If we write a position of the square by counting the corners in anticlockwise direc-

tion, the initial position is 1234. After repetead rotations by 90◦ the subsequent

positions are 4123, 3412 and 2341. Then again to 1234. After flipping about

the diagonal 1-3 the position becomes 1432 which reverts to the initial position

by a second flip. If we apply rotations after a flip the positions are 1432, 2143,

3214 and 4321. Thus, the all eight symmetric positions of the square are given by

{1234, 4123, 3412, 2341, 1432, 2143, 3214, 4321}. The transformation of the square

from its original position to any of its symmetric position is called a symmetric

transformation.

Now consider the set S = {1, 2, 3, 4} and consider the set of all permutations of S.

A permutation is a bijection from the set S to S. If f : S → S is a permutation we

write it as f =

(
1 2 3 4
i1 i2 i3 i4

)
, where f(1) = i1, f(2) = i2 etc. Composition of

two permutations is another permutation, for example if f =

(
1 2 3 4
2 4 3 1

)
and

g =

(
1 2 3 4
3 4 1 2

)
then the composition g ◦f is given by g ◦f =

(
1 2 3 4
3 4 1 2

)
◦(

1 2 3 4
2 4 3 1

)
=

(
1 2 3 4
4 2 1 3

)
. To find the calculation, see by f , 1 goes to 2 and

by g, 2 goes to 4, hence by g◦f , 1 goes to 4. In brief, the movement of other elements

are as follows: 2
f−→ 4

g−→ 2, i.e. 2
g◦f−→ 2, 3

f−→ 3
g−→ 1, i.e. 3

g◦f−→ 1, 4
f−→ 1

g−→ 3,

i.e. 4
g◦f−→ 3. Similarly f◦g is given by f◦g =

(
1 2 3 4
3 1 2 4

)
. The identity mapping

is called the identity permutation, denoted by i, i.e., i =

(
1 2 3 4
1 2 3 4

)
. An easy

calculation shows that there are 4! = 24 permutations on the set S = {1, 2, 3, 4}.

The set of all permutations on the set has the following properties:
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1. Composition of two permutations is also a permutation.

2. For permutations f, g, h, (f ◦ g) ◦ h = f ◦ (g ◦ h), this is called associative

property.

3. Composition of any permutation with the identity permutation i leaves it

unchanged.

4. Every permutation f has an inverse permutation f−1 in the sense that f◦f−1 =

f−1 ◦ f = i.

To find the inverse of a permutation, just interchange the rows and arrange columns

accordingly. For example, if f =

(
1 2 3 4
2 4 3 1

)
then f−1 =

(
2 4 3 1
1 2 3 4

)
=(

1 2 3 4
4 1 3 2

)
.

Now, back to symmetric transformations of a square. The rotation r and the

flip s are permutations which are be written as r =

(
1 2 3 4
4 1 2 3

)
and s =(

1 2 3 4
1 4 3 2

)
. Any symmetric transformation is repeated compositions of r and

s. All the symmetric transformations are i = r4 = s2, r, r2, r3, s, r◦s, r2◦s and r3◦s.
We write fk = f ◦ f ◦ · · · ◦ f (k-times) for any permutation f . We observe that The

set of all symmetric transformations of the square satisfies all the four properties

listed above that satisfied by the set of all permutations of S.

The set of all permutations of the set {1, 2, 3, 4}, denoted by S4, is called permutation

group of degree 4 and the set of symmetric transformations of the square is denoted

by D4 called the dihedral group of degree 4. It can be noted that D4 is a subset of

S4 but both satisfy the above four properties.

1.2 Definition and examples

We are in a position to define group.

Definition. 1.1 Let S be a non empty set. A function defined on S × S is called

a binary operation or a binary composition on the set S.

Example. 1.2 Usual addition, multiplication on the set of real or complex numbers

or their subsets are examples of binary operations. The compositions of functions

on some set S is also an example of binary operation on the set of all the functions

from S to S.
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Notation. 1.3 If ∗ is a binary operation on a set S, as it is a function on S × S,

i.e., ∗ : S × S → S ′, for a, b ∈ S instead of writing ∗(a, b) we write it as a ∗ b. We

are already familiar with it, such as for addition we write a+ b instead of +(a, b).

Definition. 1.4 A binary operation ∗ defined on a set S is said to satisfy the

closure property if the codomain set of ∗ is S itself, i.e., ∗ : S × S → S. In other

words, if for all a, b ∈ S, a ∗ b ∈ S. If ∗ satisfy the closure property, we say that S

is closed under ∗.

Example. 1.5 On the set N of all natural numbers addition and multiplication

satisfy the closure property but the subtraction or division does not satisfy it, as for

a, b ∈ N, a + b and a · b are members of N but a − n or a/b may bot be a member

of N.

Definition. 1.6 A binary operation ∗ on a set S is said to satisfy associative

property if for all a, b, c ∈ S, a ∗ (b ∗ c) = (a ∗ b) ∗ c. We say ∗ is associative if it

satisfy the associative property.

Example. 1.7 1. On the set Z of integers, + and · are associative where − is

not associative.

2. On the set R− {0} of non-zero real numbers division and subtraction are not

associative, whereas addition and multiplication are associative.

Definition. 1.8 An ordered pair (S, ∗) is called a semigroup if S is a non-empty

set ∗ is a binary operation on S and ∗ satisfies the closure property and associative

property. If ∗ satisfies only the closure property then it is called a groupoid.

Example. 1.9 1. (N,+), (N, ·) are simplest examples of semigroup.

2. (R+, ·) is a semigroup, where R+ is the set of all positive real numbers.

Definition. 1.10 An element e on a groupoid (S, ∗) is called a left identity element

if e ∗ a = a for all a ∈ S. e is called a right identity element if a ∗ e = a for all a ∈ S.

e is called an identity element if it is both a right identity element and a left identity

element, i.e., if e ∗ a = a ∗ e = a for all a ∈ S.

Example. 1.11 1. In the system (Z,+), 0 is the identity element, since for

a ∈ Z, a+ 0 = 0 + a = a.
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2. In the system (R − {0}, ·), 1 is the idntity element, since for a ∈ R − {0},
a · 1 = 1 · a = a.

3. If S is the set of all 2×2 non-singular matrices over the real numbers then the

identity matrix I2 =

(
1 0
0 1

)
is the left identity element as well as the right

identity element with respect to matrix multiplication.

4. Consider the set Z of all the integers. Define a binary operation ∗ by a ∗ b =

2a + b for all a, b ∈ Z. Then for any a ∈ Z, 0 ∗ a = 2 · 0 + a = a. Thus 0 is a

left identity element of (Z, ∗). But for any a ∈ Z, a∗0 = 2a+ 0 6= a. Thus 0 is

not a right identity element. In fact, for this binary operation there is no right

identity element, for a ∗ e = a implies that 2a+ e = a, i.e., e = −a. Thus e is

dependent on a and hence can not be a right identity element of the system.

Definition. 1.12 Let G be a set, ∗ be a binary operation on G. Then the pair

(G, ∗) is called a group if it satisfies the following axioms:

1. G is closed under ∗,

2. ∗ is associative,

3. There is a left identity element e in G such that e ∗ a = a for all a ∈ G,

4. For every a ∈ G there exists an element b ∈ G such that b ∗ a = e, b is called

a left inverse of a and is denoted by a−1. Thus we have a−1 ∗ a = e.

It has not been mentioned exclusively that G is non empty, as it follows from the

existence of left identity element. Before providing any example of a group we write

some elementary results which will help us to modify the definition of a group.

Theorem. 1.13 In a group (G, ∗)

1. every left identity element is also a right identity element.

2. left inverse of an element is also a right inverse of that element.

Proof. 1. Let e be a left identity element of G, i.e., e∗x = x for all x ∈ G. Assume

that a ∈ G, b is a left inverse of a and c is a left inverse of b, i.e., b ∗ a = e and
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c ∗ b = e. Now,

e ∗ a = a ⇒ (e ∗ a) ∗ e = a ∗ e ⇒ ((c ∗ b) ∗ a) ∗ e = a ∗ e

⇒ (c ∗ (b ∗ a)) ∗ e = a ∗ e (by associative property)

⇒ (c ∗ e) ∗ e = a ∗ e ⇒ c ∗ (e ∗ e) = a ∗ e ⇒ c ∗ e = a ∗ e. (1)

Again, e ∗ a = a ⇒ (c ∗ b) ∗ a = a ⇒ c ∗ (b ∗ a) = a ⇒ c ∗ e = a. (2)

From (1) and (2) above we have a ∗ e = a. Since this is true for every a ∈ G, e is a

right identity element of G.

2. Again, e = c∗b = c∗(e∗b) = (c∗e)∗b = (a∗e)∗b (by (1) above) = a∗(e∗b) = a∗b.
Thus b is right inverse of a. �

In view of the above result without any loss of generality we may assume the ex-

istence of identity element and inverse of each element in a group instead of left

identity element and left inverse of each element in the group. Hence we modify the

definition of a group as follows:

Definition. 1.14 Let G be a set, ∗ be a binary operation on G. Then the pair

(G, ∗) is called a group if it satisfies the following axioms:

1. G is closed under ∗,

2. ∗ is associative,

3. There is an identity element e in G such that e ∗ a = a ∗ e = a for all a ∈ G,

4. For every a ∈ G there exists an element b ∈ G such that b ∗ a = a ∗ b = e, b is

called inverse of a and is denoted by a−1. Thus we have a−1 ∗ a = a ∗ a−1 = e.

Example. 1.15 1. (Z,+), (R,+), (C,+) are examples of group.

2. (R− {0}, · ), (C− {0}, · ) are also examples of group.

3. Let Mn(R) denote the set of all n × n matrices with real number entries.

Then Mn(R) is a group under matrix addition, zero matrix being the identity

element and negative of a matrix is its inverse.

4. Let GLn(R) denote the set of all n × n non-singular matrices over R. Then

GLn(R) is a group with respect to matrix multiplication, the identity matrix

In being the identity element and the inverse of each matrix is the inverse of

it.
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5. Let Sn denote the set of all permutations of the set {1, 2, . . . , n}. Then (Sn, ◦)
is a group, here ◦ denotes the composition of functions.

6. It has already been proved that D4, the set of all symmetric transformations of

the square is a group with respect to composition of transformations. For any

positive integer n > 2, Dn denotes the set of all symmetric transformations

of a regular n-gon and is called the dihedral group of order n. The symmetric

transformations are compositions of rotation by an angle 2π/n about its center

(90◦ for the case of square) and a flip about an axis of symmetry (such as a

straight line through the centre and a vertex of the polygon, a diagonal in the

case of square).

7. Let ω denote the cube root of unity, S = {1, ω, ω2}. Then (S, ·) is a group.

Note that {1, ω, ω2} is the set of all roots of the equation x3 = 1.

Similarly, the set B = {1,−1, i,−i}, where i2 = −1, forms a group under

multiplication of complex numbers. Here B = {1, i, i2, i3} is the set of all

roots of the equation x4 = 1

In general, for n ∈ N let Ωn denote the set of the roots of the equation

xn = 1. Then (Ωn, ·) is a group. Note that Ωn can be written as Ωn =

{1, α, α2, . . . , αn−1} where α = cos 2π
n

+ i sin 2π
n

.

8. Consider the setQ8 = {1,−1, i, j, k,−i,−j,−k}. Define multiplication onQ as

follows: 1·x = x·1 = x,−1·x = x·−1 = −x for all x ∈ Q, i·i = j·j = k·k = −1,

i · j = k, j · k = i, k · i = j and j · i = −k, k · j = −i, i · k = −j. All these

operations can be written in the following composition table:

· 1 i j k −1 −i −j −k
1 1 i j k −1 −i −j −k
i i −1 k −j −i 1 −k j
j j −k −1 i −j k 1 −i
k k j −i −1 −k −j i 1
−1 −1 −i −j −k 1 i j k
−i −i 1 −k j i −1 k −j
−j −j k 1 −i j −k −1 i
−k −k −j i 1 k j −i −1

In this table x · y means x is taken from leftmost column and y is taken from

header row. With this operation (Q8, ·) is a group, called the quaternion group.

9. Let p ∈ N. Consider a relation ρp on Z by aρpb if and only if a− b is divisible

by p. It can easily be verified that ρp is an equivalence relation on Z (verify it
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by yourself, to ensure that it is really easy). The set of all equivalence classes

is denoted by Zp = {(0), (1), . . . , (p− 1)}. Define addition + on Zp by for all

(a), (b) ∈ Zp, (a) + (b) = (a + b). Then (Zp,+) is a group, called the residue

class group modulo p. Here (0) is the identity element and for (k) ∈ Zp since

(k) + (p− k) = (p) = (0), (p− k) is the inverse of (k).

Definition. 1.16 A group (G, ∗) is called abelian group or commutative group if

for all a, b ∈ G, a ∗ b = b ∗ a.

Example. 1.17 1. The groups (Z,+), (R,+) are abelian groups.

2. The group (Gln(R), · ) is not abelian, since matrix multiplication is not com-

mutative.

3. The group (Sn, ◦) is not abelian, since composition of functions is not commu-

tative.

Notation. 1.18 1. Let (G, ∗) be a group and a ∈ G. For n ∈ N the element

a∗a∗ · · ·∗a (n-times) is denoted by an. When the binary operation is denoted

by + then the element a+ a+ · · ·+ a (n times) is denoted by na.

2. Usually the identity element is denoted by e. When the binary operation is

taken as multiplication ‘·’ the identity element is written as 1. When the

binary operation is taken as +, the identity element is written as 0, in this

case the inverse of an element a is written as −a.

Definition. 1.19 A group (G, ∗) is called a finite group if G has a finite number

of elements otherwise it is called an infinite group. The number of elements in the

group G is called the order of the group and is denoted by |G| or by o(G).

Example. 1.20 (Z,+), (R,+), (Mn(R),+) etc. are infinite group. For n ∈ N, Sn

is an example of finite group and |Sn| = n!. The dihedral group Dn is also a finite

group with |Dn| = 2n.

1.3 Elementary Properties

So far we have talked of an identity element of a group or an inverse of an element of

the group. The following result shows that a group has exactly one identity element

and every element have only one inverse. Hence we shall talk of the identity element

and the inverse of an element of a group.
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Theorem. 1.21 In a group the identity element and the inverse of every element

are unique.

Proof. Let (G, ∗) be a group and if possible, let it has two identity elements say,

e and e′. Then e = e ∗ e′ (e′ is taken as (right) identity element). Also e′ = e ∗ e′

(here e is taken as (left) identity element). Thus e = e ∗ e′ = e′.

Let a ∈ G and if possible suppose that a has two inverses b and b′, i.e., a∗b = b∗a = e

and a ∗ b′ = b′ ∗ a = e. Then b = b ∗ e = b ∗ (a ∗ b′) = (b ∗ a) ∗ b′ = e ∗ b′ = b′. Thus

b = b′. �

Theorem. 1.22 In a group (G, ∗),

1. for a ∈ G, (a−1)−1 = a,

2. for a, b ∈ G, (a ∗ b)−1 = b−1 ∗ a−1.

Proof. 1. We have a ∗ a−1 = a−1 ∗ a = e, where e is the identity element. This

implies that a is the inverse of the element a−1, i.e., (a−1)−1 = a.

2. By using associative property, (a ∗ b) ∗ (b−1 ∗ a−1) = ((a ∗ b) ∗ b−1) ∗ a−1 =

(a ∗ (b ∗ b−1)) ∗ a−1 = (a ∗ e) ∗ a−1 = a ∗ a−1 = e. Similarly (b−1 ∗ a−1) ∗ (a ∗ b) = e.

Thus b−1 ∗ a−1 is the inverse of a ∗ b, i.e., (a ∗ b)−1 = b−1 ∗ a−1. �

Theorem. 1.23 The left and right cancellation laws hold in a group (G, ∗):

1. for a, b, c ∈ G, if a ∗ b = a ∗ c then b = c.

2. for a, b, c ∈ G, if b ∗ a = c ∗ a then b = c.

Proof. For the first part a∗ b = a∗ c⇒ a−1 ∗ (a∗ b) = a−1 ∗ (a∗ c)⇒ (a−1 ∗a)∗ b =

(a−1 ∗ a) ∗ c ⇒ e ∗ b = e ∗ c ⇒ b = c. The second part is done similarly, the reader

may easily work out it. �

When there is no chance of ambiguity about the binary operation ∗, instead of

writing (G, ∗) we write simply G. We also write ab instead of writing a ∗ b if we

agree that ab is not actually the multiplication of a and b it is the binary operation

of a and b in G.

Theorem. 1.24 If G is a group and a, b ∈ G then the equations ax = b and ya = b

have unique solutions in G.
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Proof. Taking x = a−1b we have ax = a(a−1b) = (aa−1)b = eb = b, where e

is the identity element. Thus x = a−1b is a solution of the equation ax = b. To

check the uniqueness of the solution let x1 and x2 be two solutions of the equation

ax = n. Then ax1 = b and ax2 = b which implies that ax1 = ax2. Taking binary

operation by a−1 from left on both sides and using associative property we have

a−1(ax1) = a−1(ax2) ⇒ (a−1a)x1 = (a−1a)x2 ⇒ ex1 = ex2 ⇒ x1 = x2. Thus the

solution is unique.

The second part is similar and left to the reader. �

Converse of the above theorem is also true in the sense that in a semigroup if the

equations ax = b and ya = b have unique solutions then it becomes a group.

Theorem. 1.25 Let G be a non-empty semigroup such that for each a, b ∈ G the

equations ax = b and ya = b have unique solutions in G. Then G is a group.

Proof. As G is a semigroup the closure and associative properties hold. To com-

plete the proof we have to check that G has the identity element and every element

of G has inverse in G.

Let us choose a ∈ G arbitrarily. The the equations ya = a has a solutions in G, let e

be the solution. Then ea = a. Let b be an arbitrary element of G. Then the equation

ax = b has a solution, say c. Then ac = b. Then eb = e(ac) = (ea)c = ac = b. Since

b has been chosen arbitrarily in G it follows that e is the left identity element of G.

To check the existence of inverse of each element of G, Choose a ∈ G. Then the

equation ya = e has a solution in G, let b be the solution. Then ba = e and hence b

is the left inverse of a. So every element of G has a left inverse in G. Thus G is a

group. �

Definition. 1.26 The order of an element a in a group G is the smallest positive

integer n such that an = e where e is the identity element. If no such integer exists

the order of a is defined to be infinite. Order of the element a is denoted by |a| or

by o(a).

In case the binary operation is ‘+’ where the identity element is denoted by 0, the

order of the element a is the smallest positive integer n such that na = 0.

Example. 1.27 1. Each non-zero element of (Z,+) has order infinity.

2. In the group (R − {0}, ·), o(−1) = 2, o(1) = 1 and o(x) = ∞ for all other

elements x.
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3. In the multiplicative group of n-th root of unity, where n is a prime number,

every element other than 1 has order n.

4. In the multiplicative group {1,−1, ω, ω2,−ω,−ω2} (roots of the equation x6 =

1) o(−1) = 2, o(ω) = o(ω2) = 3, o(−ω) = o(−ω2) = 6.

5. In a group G, o(x) = o(x−1) for any x ∈ G.

1.4 Exercises

1. Verify whether the set {a+ b
√

2 : a, b ∈ Q, |a|+ |b| 6= 0} forms a group under

multiplication.

2. Let I = {x : 0 ≤ x ≤ 1, x ∈ R}. Define an operation ∗ on I by x ∗ y =

x+ y − [x+ y] for all xy ∈ I. Prove that (I, ∗) is a group.

3. Write down the composition table of Z6.

4. If p is prime show that the non-zero elements of Zp froms a group under

multiplication, defined by (a).(b) = (a.b) for all (a), (b) ∈ Zp − {(0)}.

5. If o(a) = 2 for some element a in a group G prove that a = a−1.

6. In a group G if (ab)2 = a2b2 for all a, b ∈ G then prove that G is abelian.

7. If in a group o(a) = n then prove that a−1 = an−1.

8. If G is a finite group of even order prove that there exists an element a ∈ G
such that a = a−1.
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2 Subgroups

2.1 Definition and Examples

We have already seen that S4, the set of all permutations of the set {1, 2, 3, 4} is

a group and D4, the group of all symmetric transformations of the square can be

regarded as subset of S4. A subset of a group which itself is also a group with respect

to the same operation is called a subgroup.

Definition. 2.1 Let (G, ∗) be a group. A set H ⊂ G is called a subgroup of G if

(H, ∗) is also a group, where the binary operation ∗ on H is the restriction of ∗ on

G to H. If H is a subgroup of G it is written as H < G.

Example. 2.2 1. For every group G, G itself and {e} are subgroups of G, called

the trivial subgroups where e is the identity element.

2. Let n ∈ N, n > 1, nZ = {0,±n,±2n, . . .}. Then (nZ,+) is a subgroup of

(Z,+).

3. {1, ω, ω2} is a subgroup of the group {1,−1, ω,−ω, ω2,−ω2}.

4. As we have mentioned earlier, Dn is a subgroup of Sn, n ≥ 3.

5. for n ∈ N, SLn(R) the set of all n×n matrices with determinant 1 is a subgroup

of GLn(R), the multiplicative group of all non-singular n× n matrices.

The necessary and sufficient condition for a subset of a group to be a subgroup is

the following:

Theorem. 2.3 Let G be a group. A non-empty subset H ⊂ G is a subgroup of G

if and only if (i) for all a, b ∈ H, ab ∈ H and (ii) for all a ∈ H, a−1 ∈ H.

Proof. If H is a subgroup of G then H itself is a group with respect to the same

binary operation as in G. By closure property of H, a, b ∈ H ⇒ ab ∈ H. Also for

a ∈ H, H being a group, a−1 ∈ H. Thus conditions (i) and (ii) are satisfied.

Conversely, assume that H is a subset of the group G satisfying the conditions (i) and

(ii). Condition (i) says that H satisfies the closure property. As the binary operation

in H is the same as that in G and associative property holds in G it follows that

associative property holds also in H (this is called hereditary property). As H 6= ∅,
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choose a ∈ H. By condition (ii) a−1 ∈ H and by condition (i) aa−1 = e ∈ H. Thus

H has the identity element. The existence of inverse of each element of H follows

from condition (ii). Thus H is a group under the same binary operation as in G and

hence H is a subgroup of G. �

In the above theorem the conditions (i) and (ii) can be written in a combined form

as follows:

Theorem. 2.4 A non empty subset H of a group G is a subgroup of G if and only

if for all a, b ∈ H, a−1b ∈ H.

Example. 2.5 1. Prove for n ∈ N, (nZ,+) is a subgroup of (Z,+).

Let a, b ∈ nZ. Then there exist n1, n2 ∈ Z such that a = nn1 and b = nn2.

Then a+b = nn1+nn2 = n(n1+n2). Since n1+n2 ∈ Z it follows that a+b ∈ nZ.

Thus condition (i) is satisfied. Also for a = nn1 ∈ nZ, −a = −nn1 = n(−n1).

Since −n1 ∈ Z, n(−n1) ∈ nZ, i.e., −a ∈ nZ. Thus condition (ii) also hold.

hence nZ is a subgroup of Z.

2. Prove that SL2(R) is a proper subgroup of GL2(R).

GL2(R) denotes the set of all 2× 2 non-singular matrices over R and SL2(R)

denotes the set of all 2×2 matrices whose determinant is 1. Let A,B ∈ SL2(R),

then |A| = |B| = 1. Now, |AB| = |A| · |B| = 1 · 1 = 1 hence AB ∈ SL2(R).

Also A ∈ SL2(R) ⇒ |A| = 1 ⇒ |A−1| = 1
1

= 1, i.e., A−1 ∈ SL2(R). Hence

SL2(R) is a subgroup of GL2(R). To check it is proper (i.e., non-trivial) we

have to check {I2} $ SL2(R) $ GL2(R). Consider the matrix A =

(
4 1
7 2

)
.

Then |A| = 8− 7 = 1 shows that A ∈ SL2(R). Also B =

(
2 3
5 6

)
∈ GL2(R)−

SL2(R). Hence the subgroup is proper.

3. Let S1 = {z ∈ C : |z| = 1}, the circle in complex plane with center at

origin and radius 1. Prove that S1 is a group under multiplication and for any

n ∈ N, n > 1, the roots of the equation xn = 1 form a subgroup of S1.

That S1 is a group with respect to complex multiplication is a routine check,

students are asked to do it. Let Ωn = {z ∈ C : zn = 1} denote the set

of all the roots of the equation xn = 1. It has been shown that Ωn can be

written as Ωn = {1, α, α2, . . . , αn−1} where α = cos θ + i sin θ, θ = 2π
n

. (i) If

αk, αl ∈ Ωn then αk ·αl = αk+l = αr ∈ Ωn, where r is the remainder when k+ l

is divided by n. (if k + l > n then dividing k + l by n we have k + l = dn+ r,
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0 ≤ r < n, hence αdn+r = (αn)d · αr = 1d · αr = αr). (ii) Also for αk ∈ Ωn,

(αk)−1 = αn−k ∈ Ωn. Hence Ωn is a subgroup of S1.

2.2 Some special subgroups

Definition. 2.6 Let G be a group and A be a non-empty subset of G. Then the

set {g ∈ G : gag−1 = a ∀a ∈ A} is called the centralizer of the set A and is denoted

by CG(A). If A = {a} is a singleton set we write its centralizer as CG(a) instead of

CG({a}).

It can be noted that for a ∈ A and g ∈ G, gag−1 = a if and only if ga = ag. Thus

the centralizer of a set A is actually those elements of G which commute with every

member of A.

Theorem. 2.7 The centralizer of a subset is a subgroup.

Proof. Let G be a group and A ⊂ G,A 6= ∅. To prove that CG(A) is a subgroup of

G choose g, h ∈ CG(A). Then gag−1 = hah−1 = a for all a ∈ A. For a ∈ A we have

(gh)a(gh)−1 = (gh)a(h−1g−1) = g(hah−1)g−1 = gag−1 = a. Hence gh ∈ CG(A).

Also, for g ∈ CG(A), a ∈ A, since gag−1 = a we have g−1(gag−1)g = g−1ag ⇒
(g−1g)a(g−1g) = g−1ag ⇒ eae = g−1ag ⇒ a = g−1ag, where e is the identity

element. Since this is true for all a ∈ A it follows that g−1 ∈ CG(A). Thus CG(A)

is a subgroup of G. �

Example. 2.8 1. For an abelian group G, for any element a, CG(a) = G.

2. Find the centralizer of i in the group Q8, the group of quaternions.

From the composition table of Q8 it is observed that CQ8(i) = {±1,±i}.

3. In S4, if σ =

(
1 2 3 4
3 2 1 4

)
, then CS4(σ) = {i, σ, ρ}, where ρ =

(
1 2 3 4
1 4 3 2

)
and i denotes the identity permutation. One can observe that the members

of CS4(σ) other than σ move only those members of {1, 2, 3, 4} which are not

effected by σ, we call those permutations disjoint from σ. Keeping this in

mind, find CS5(f) where f =

(
1 2 3 4 5
1 3 2 4 5

)
∈ S5.

Definition. 2.9 The center of a group G is the set of all those members of G which

commute with every member of G and is denoted by Z(G). Thus Z(G) = {x ∈ G :

xg = gx ∀g ∈ G}.
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It can be observed that Z(G) is nothing but the centralizer of the whole group, i.e.,

Z(G) = CG(G) for any group G. Since centralizer of a subset of G is a subgroup of

G as a particular case we can conclude immediately that

Theorem. 2.10 The center of a group is a subgroup of it.

For a set A ⊂ G and g ∈ G define gA = {ga : a ∈ A} and Ag = {ag : a ∈ A}.

Definition. 2.11 Let A be a subset of a group G. The normalizer of A, denoted

by NG(A), is the set {g ∈ G : gA = Ag}.

If can be noted that though the definitions are looking similar, the centralizer and

normalizer of a set A are different. For g ∈ G, g ∈ CG(A) if and only if ga = ag

for all a ∈ A, on the other hand g ∈ NG(A) if and only if gA = Ag, i.e., for all

a ∈ A there exists b ∈ A such that ga = bg. However if g ∈ CG(A) then obviously

g ∈ NG(A), i.e., CG(A) ⊂ NG(A).

Example. 2.12 Consider G = S3 the group of permutations on the set {1, 2, 3}.

Let us consider the set A = {i, f, g} where i is the identity mapping, f =

(
1 2 3
2 3 1

)
and g =

(
1 2 3
3 1 2

)
. Then one can easily check that CG(A) = A whereas NG(A) =

G. [Check it by yourself to verify that it is really easy. First write down all the

six members of S3 and then calculate the compositions from both sides with the

members of A].

2.3 Properties of Subgroups

We study some more elementary properties of subgroups.

Theorem. 2.13 Intersection of two subgroups of a group is again a subgroup.

Proof. Let G be a group and H,K are subgroups of G. If H ∩K = {e}, where e

is the identity element of G, then it is a subgroup. Otherwise choose a, b ∈ H ∩K.

Then since H is a subgroup and a, b ∈ H it follows that ab ∈ H. Similarly ab ∈ K.

Thus ab ∈ H ∩K.

Also for a ∈ H ∩ K, since H,K are subgroups and a ∈ H, a ∈ K it follows that

a−1 ∈ H, a−1 ∈ K and hence a−1 ∈ H ∩K. Thus H ∩K is a subgroup of G. �

Union of two subgroups need not be a subgroup, the following example shows it.
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Example. 2.14 Consider the groups (2Z,+) and (3Z,+), both are subgroups of

(Z,+). Then 2 ∈ 2Z ⊂ 2Z ∪ 3Z and 3 ∈ 3Z ⊂ 2Z ∪ 3Z, but 2 + 3 = 5 6∈ 2Z ∪ 3Z.

Thus 2Z ∪ 3Z can not be a subgroup of Z.

The above result can be extended to an arbitrary collection of subgroups.

Theorem. 2.15 Let {Hi : i ∈ I} be a collection of subgroups of a group G. Then

the intersection ∩i∈IHi is also a subgroup.

Proof is similar to that one already proved.

Definition. 2.16 let G be a group, a ∈ G. Then the set {an : n ∈ Z} is a

group, called the cyclic subgroup generated by a and is denoted by 〈a〉. a is called a

generator of the cyclic subgroup or the subgroup is called generated by a.

Example. 2.17 1. The cyclic subgroup generated by i in Q8 is {±1,±i}, since

it is the set {i, i2, i3, i4}. i5 = i and hence the same elements are repeated for

all other powers. This is why it is called cyclic.

2. In the group (Z,+) for any n ∈ Z, 〈n〉 = {nk : k ∈ Z} = {0,±n,±2n, . . .} =

nZ. Note that here Z being an additive group we write nk instead of nk.

3. If in a group G an element a ∈ G has order n, i.e., an = e then 〈a〉 =

{a, a2, a3, . . . , an−1, an = e}. All other powers will give the same elements, i.e.,

an+1 = a, an+2 = a2, a0 = e, a−1 = an−1, a−2 = an−2 etc.

4. Consider Z6, the additive group of residue class modulo 6. The elements

are {(0), (1), (2), . . . , (5)}. Then 〈(2)〉 = 〈(4)〉 = {(2), (4), (0)}. So different

elements may generate the same cyclic subgroup.

Definition. 2.18 If G is a group and a ∈ G such that 〈a〉 = G, i.e., the cyclic

subgroup generated by a is G itself, we call G a cyclic group and write it as G = 〈a〉.
a is called the generator of a.

Example. 2.19 1. The group (Z,+) has two generators 1 and −1.

2. For n ∈ N, let α = cos 2π
n

+ i sin 2π
n

. Then the roots of the equation xn = 1

are {1, α, α2, . . . , αn−1} which is a group under multiplication. Obviously α is

a generator of this group. It can be observed that if n is prime then any αk

can be a generator.
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We shall study more on cyclic groups in course of time.

Definition. 2.20 Let G be a group, H,K be two subgroups of G. Then the set

HK = {ab : a ∈ H, b ∈ K} is called the internal direct product of H and K.

Similarly KH = {kh : k ∈ K,h ∈ H}.

We say that HK = KH if the two sets are equal, it does not mean that hk = kh for

all h ∈ H for all k ∈ K, it means that for h ∈ H, k ∈ K there exist h1 ∈ H, k1 ∈ K
such that hk = k1h1 so that hk ∈ KH, i.e., HK ⊂ KH. Similarly kh = h2k2 for

some h2 ∈ H, k2 ∈ K so that kh ∈ HK, i.e., KH ⊂ HK. This makes the two sets

equal.

Theorem. 2.21 If H and K are subgroups of a group G then the product HK is

also a subgroup of G provided HK = KH.

Proof. Choose a, b ∈ HK. Then a = h1k1 and b = h2k2 for some h1, h1 ∈ H and

k1, k2 ∈ K. Then

a−1b = (h1k1)
−1(h2k2) = (k−11 h−11 )(h2k2)

= k−11 (h−11 h2)k2 (by associative property)

= k−11 h3k2 (where h3 = h−11 h2)

= k−11 k3h4 (where h3k2 = k3h4, since HK = KH)

= k4h4 (where k−11 k3 = k4) .

Thus a−1b ∈ KH = HK. Hence KH is a subgroup of G. �

The condition HK = KH is necessary, the following example explains it.

Example. 2.22 Consider G = S3 the permutation group on the set {1, 2, 3}. Let

H = {i, ρ} and K = {i, σ}, where ρ =

(
1 2 3
2 1 3

)
and σ =

(
1 2 3
1 3 2

)
. Here note

that ρ−1 = ρ and σ−1 = σ, i.e., ρ2 = σ2 = i. Now HK = {i, ρ, σ, ρσ} is not a

subgroup of S3 since ρσ =

(
1 2 3
2 3 1

)
has no inverse in HK. (Calculate (ρσ)−1 and

see it).



Department of Mathematics, P R Thakur Govt College 18

2.4 Exercises

1. Find the cyclic subgroup of Z30 generated by (25).

2. Show that a group with no proper nontrivial subgroup is cyclic.

3. Show that any subgroup of a cyclic group is cyclic.

4. Show that the elements (1), (5), (7), (11), (13) and (17) are generators of Z18.

3 Cyclic Group

The cyclic subgroup of a group and in particular the cyclic group have already been

defined in previous section. We recall the definition of cyclic group once again.

Definition. 3.1 A group generated by a single element is called a cyclic group. If

an element a is a generator of a group G then it is written as G = 〈a〉.

If a is a generator of the group G then G = {ak : k ∈ Z}. Recall that for any positive

integer k, ak = a◦a◦· · ·◦a (k-times) and a−k = a−1◦a−1◦· · ·◦a−1 (k-times). When

the binary operation is + we write ka instead of ak and −a for a−1. Hence we can

say the group (Z,+) is cyclic group generated by 1. Also −1 is another generator

of (Z,+) as Z = {k.(−1) : k ∈ Z}.

Example. 3.2 1. Consider the multiplicative group G of all the roots of the

equation xn = 1, where n > 1 is an integer. Taking θ = 2π
n

and α = cos θ +

i sin θ, the roots are α, α2, . . . , αn−1, αn = 1. Thus α is a generator of the

group, i.e., G = 〈α〉.

2. In the above example if n is a prime integer then for any k, not a multiple of

n, αk is a generator of G. However, for a composite n some αk may generate

a proper subgroup of G. For example let n = 6, then −ω is a generator of the

group of all the roots of x6 = 1. But (−ω)4 = ω generates a proper subgroup

{1, ω, ω2} of it.

3. Consider a regular n-gon in plane, Let r denotes the rotation about the centre

of the polygon by an angle 2π
n

. Then 〈r〉 is a group and is a subgroup of Dn.
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4. Dn, the dihedral group of order n is not a cyclic group, since the flip of the

plane about a symmetric axis can not be obtained from rotation, on the other

hand a rotation can not be obtained from flip.

Theorem. 3.3 If a is a generator of a group G then o(G) = o(a), in particular if

G is finite and o(G) = n then G = {e, a, a2, . . . , an−1}.

Proof. Let o(a) = n < ∞. Then an = e, where e is the identity element of G.

Also a, a2, . . . , an−1, e are distinct elements of G, for if ai = aj, 1 ≤ i < j < n

then ai−j = a0 = e contradicting the fact that n is the smallest positive integer

such that an = e. Also if k > n then by division algorithm k = nr + q, r ∈ N,

0 ≤ q < n. Hence ak = anr+q = (an)raq = eraq = eaq = aq where 0 ≤ q < n. Hence

a, a2, . . . , an−1, e are the only elements of G and hence o(G) = n.

When o(a) = ∞ then there exists no n for which an = e. Hence for i, j ∈ Z,

i =6= j, if ai = aj then ai−j = e showing that o(a) is finite – a contradiction. Hence

{ai : i ∈ Z} is an infinite set and hence o(G) =∞. �

Theorem. 3.4 In a group G if am = an = e for m,n ∈ N then ad = e where

d = gcd(m,n). Also if am = e where m ∈ N then o(a) divides m.

Proof. Since d = gcd(m,n) there exist integers x, y such that d = mx+ny. Hence

ad = amx+ny = amxany = (am)x(bn)y = exey = e.

Now, assume that am = e and o(a) = n. Then, since an = e, by above ad = e

where d = gcd(m,n). But n being the smallest positive integer such that an = e

and 0 < d ≤ n, we must have d = n. Hence gcd(m,n) = n, i.e., n divides m. �

4 Permutation

We have already been introduced with permutation before defining the group. Here

we study it formally.

The set of all the bijective maps on a set S is denoted by A(S). A(S) forms a group

with respect to the composition of mappings. For a finite set S = {x1, x2, . . . , xn}
we write Sn instead of A(S). The elements of Sn are called the permutations on

S. Here also without any loss of generality we may take S = {1, 2, . . . , n} as we

are not interested of the elements of the set rather the effect of permutation on the

elements.
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Definition. 4.1 A permutation on a finite set S is a bijection map on the set onto

itself. The group of all the permutations on the set is called the group of symmetry

of order n.

If f ∈ Sn we write it as f =

(
1 2 · · · n
i1 i2 · · · in

)
where f(1) = i1, f(2) = i2, . . .,

f(n) = in. Writing the inverse of f is simple, just interchange the rows and arrange

columns accordingly. for example take f =

(
1 2 3 4
2 3 4 1

)
in S4. Then f−1 is given

by,

f−1 =

(
2 3 4 1
1 2 3 4

)
=

(
1 2 3 4
4 1 2 3

)
.

The product (actually composition) of two permutations is obtained by applying

the right first and then the left. For example, if f =

(
1 2 · · · n
i1 i2 · · · in

)
and

g =

(
1 2 · · · n
j1 j2 · · · jn

)
then their products are gf =

(
1 2 · · · n
ji1 ji2 · · · jin

)
and

fg =

(
1 2 · · · n
ij1 ij2 · · · ijn

)
.

Example. 4.2 Let f =

(
1 2 3 4
2 3 4 1

)
and g =

(
1 2 3 4
3 2 1 4

)
. Find (i) f−1,

(ii) fg and (iii) gf .

(i) f−1 =

(
2 3 4 1
1 2 3 4

)
=

(
1 2 3 4
4 1 2 3

)
.

(ii) fg =

(
1 2 3 4
2 3 4 1

)(
1 2 3 4
3 2 1 4

)
=

(
1 2 3 4
4 3 2 1

)
.

Here 1
g−→ 3

f−→ 4, 2
g−→ 2

f−→ 3, 3
g−→ 1

f−→ 2, and 4
g−→ 4

f−→ 1.

(iii) gf =

(
1 2 3 4
3 2 1 4

)(
1 2 3 4
2 3 4 1

)
=

(
1 2 3 4
2 1 4 3

)
.

4.1 Cycles and transpositions

Definition. 4.3 Let i1, i2, . . . , ik ∈ S = {1, 2, . . . , n} and f ∈ Sn be such that

f(i1) = i2, f(i2) = i3, . . . , f(ik−1) = ik, f(ik) = i1 and f(i) = i for i 6= ij, 1 ≤
j ≤ k. Then f is called a k-cycle or a cycle of length k and is denoted by f =

(i1 i2 . . . ik).

In the notation of a k-cycle the only order of the elements is important. Hence

f = (i1 i2 . . . ik) = (i2 i3 . . . ik i1) = (i3 i4 . . . ik i1 i2) and so

on.
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Example. 4.4 If f =

(
1 2 3 4
2 3 4 1

)
and g =

(
1 2 3 4
3 2 1 4

)
. Then in cycle

notation f = (1 2 3 4) = (2 3 4 1) = (3 4 1 2) = (4 1 2 3), this is

a 4-cycle and g = (1 3) = (3 1) which is a 2-cycle..

Definition. 4.5 A 2-cycle is called a transposition

Definition. 4.6 Two cycles are called disjoint if they have no integer in common.

Example. 4.7 (i) The cycles (2 3 6) and (1 5 4 7) in S7 are disjoint as there

is no common element.

(ii) (2 3 6) and (1 5 3) in S7 are not disjoint cycles as there is a common

element 3.

Theorem. 4.8 If f and g are disjoint cycles then fg = gf .

Proof. Let f = (i1 i2 . . . ik) be a k-cycle and g = (j1 j2 . . . jm) be

an m-cycle in Sn, f and g are disjoint. Let x ∈ S = {1, 2, . . . , n}. Note that

A = {i1, i2, . . . , ik} ⊂ S and B = {j1, j2, . . . , jm} ⊂ S and A ∩ B = ∅. Also for

x 6∈ A, f(x) = x and for x 6∈ B, g(x) = x.

If x ∈ A then x 6∈ B and hence f(x) ∈ A and g(x) = x. Thus gf(x) = g(f(x)) =

f(x) and fg(x) = f(g(x)) = f(x). Thus fg(x) = gf(x).

If x ∈ b then x 6∈ A and hence g(x) ∈ B and f(x) = x. Thus gf(x) = g(f(x)) = g(x)

and fg(x) = f(g(x)) = g(x). Thus fg(x) = gf(x).

If x ∈ S − (A ∪B) then f(x) = g(x) = x and hence fg(x) = gf(x).

Thus for all x ∈ S, fg(x) = gf(x). Hence fg = gf . �

Example. 4.9 Take f, g ∈ S7 as follows: f =

(
1 2 3 4 5 6 7
1 2 4 6 5 3 7

)
= (3 4 6),

a 3-cycle and g =

(
1 2 3 4 5 6 7
5 2 3 4 7 6 1

)
= (1 5 7) is also a 3-cycle. Here

S = {1, 2, 3, 4, 5, 6, 7}, A = {3, 4, 6} and B = {1, 5, 7}. Obviously, f and g are

disjoint and it can easily be verified that for all x ∈ S, fg(x) = gf(x), i.e., fg =

gf = (3 4 6)(1 5 7) = (1 5 7)(3 4 6).

Example. 4.10 For a k-cycle f = (i1 i2 . . . ik) its inverse is given by, f−1 =

(ik ik−1 . . . i2 i1).
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It can be easily verified that

ff−1 = (i1 i2 . . . ik)(ik ik−1 . . . i2 i1) = i.

where i is the identity permutation. Hence the result follows.

Example. 4.11 The inverse of a transposition is itself.

Theorem. 4.12 If f is a k-cycle then o(f) = k.

Proof. Let f = (i1 i2 . . . ik) be a k-cycle. Then f(x) = x for all x 6∈
{i1, i2, . . . , ik}. Also f(i1) = i2, f

2(i1) = f(f(i1)) = f(i2) = i3, f
3(i1) = f(f 2(i1)) =

f(i3) = i4, proceeding this way, fk−1(i1) = ik and fk(i1) = f(fk−1(i1)) = f(ik) = i1.

Hence we can write f as f = (i1 f(i1) f 2(i1) . . . fk−1(i1)).

Thus we have fk(i1) = i1, f
k(i2) = fk(f(i1)) = fk+1(i1) = f(fk(i1)) = f(i1) = i2.

For 2 < r < k, fk(ir) = fk(f r−1(i1)) = fk+r−1(i1) = f r−1(fk(i1)) = f r−1(i1) = ir.

Hence we have fk(x) = x for all x in the domain of f . Thus fk = i, the identity

element of Sn.

Since for r < k, f r(i1) = ir+1 6= i1, i.e., f r 6= i for any positive integer r less than k

we have o(f) = k. �

Theorem. 4.13 Every permutation is a product of disjoint cycles.

Proof. Take any f ∈ Sn, S = {1, 2, . . . , n}. Let A1 = {1, f(1), f 2(1), . . . , } Then

A1 is finite since S is finite. Let a be the first integer in S which is not in A1 and set

A2 = {a, f(a), f 2(a), . . .}. Then A2 is also finite. Take b ∈ S as the first element of

S which is not in A1 ∪A2 and set A3 = {b, f(b), f 2(b), . . .}. This process terminates

after a finite number of steps as S is a finite set and we have S = A1∪A2∪ · · ·∪Ak,
Ai ∩ Aj = ∅ for i 6= j. Some Ai’s may be singletons.

For each i = 1, 2, . . . , k define σi ∈ Sn by σi(x) = f(x) if x ∈ Ai and σi(x) = x

otherwise. Then each σi is a cycle, and f = σ1σ2 · · ·σk. Since A1, A2, . . . , Ak are

disjoint the cycles σ1, σ2, . . . , σk are disjoint. �

Example. 4.14 Decompose the permutation f =

(
1 2 3 4 5 6 7 8 9
5 4 3 9 7 8 1 6 2

)
into disjoint cycles.

Here S = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Starting with 1, A1 = {1, 5, 7}. First element of S

not in A1 is 2, so A2 = {2, 4, 9}. The first member not in A1∪A2 is 3. So A3 = {3}.
The first member not in A1 ∪ A2 ∪ A3 is 6. So A4 = {6, 8}.
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Hence σ1 = (1 5 7), σ2 = (2 4 9), σ3 = (3) and σ4 = (6 8). Here σ3 = (3) is

an one-cycle and we can omit it. Hence f = σ1σ2σ4 = (1 5 7)(2 4 9)(6 8).

As the cycles are disjoint, they can be placed in any order.

Theorem. 4.15 Every k-cycle can be decomposed as a product of k − 1 transposi-

tions.

Proof. If (i1 i2 . . . ik) is a k-cycle then it can be written as:

(i1 i2 . . . ik) = (i1 ik)(i1 ik−1)(i1 ik−2) · · · (i1 i3)(i1 i2). �

Here it can be observed that transpositions are not disjoint and hence the order of

the product can not be altered.

In the last two theorems we have seen that a permutation can be decomposed into

disjoint cycles and each cycle can again be decomposed into transpositions. Thus

combining these we have the following theorem.

Theorem. 4.16 Every permutation in Sn can be expressed as a product of trans-

positions.

Proof. Follows from those of the last two theorems. �

Example. 4.17 If f = (i1 j1)(i2 j2) · · · (ik jk) is a product of k transpositions

then f−1 = (ik jk)(ik−1 jk−1) · · · (i1 j1).

f−1 = ((i1 j1)(i2 j2) · · · (ik jk))
−1

= (ik jk)
−1(ik−1 jk−1)

−1 · · · (i1 j1)
−1

= (ik jk)(ik−1 jk−1) · · · (i1 j1).

Example. 4.18 Decompose the permutation f =

(
1 2 3 4 5 6 7 8 9
5 4 3 9 7 8 1 6 2

)
into transpositions. Also find the inverse of f .

We have already decomposed the permutation into disjoint cycles as

f = (1 5 7)(2 4 9)(6 8).

Now (1 5 7) = (1 7)(1 5), (2 4 9) = (2 9)(2 4). Also (6 8) is already a

transposition.

Hence f = (1 5 7)(2 4 9)(6 8) = (1 7)(1 5)(2 9)(2 4)(6 8).

Hence f−1 = (6 8)(2 4)(2 9)(1 5)(1 7) = (6 8)(2 9 4)(1 7 5) which

can be expressed as

(
1 2 3 4 5 6 7 8 9
7 9 3 2 1 8 5 6 4

)
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4.2 Odd and Even Permutations

Consider a polynomial P of n variables x1, x2, . . . , xn,

P (x1, x2, . . . , xn) = (x1 − x2)(x1 − x3) · · · (x1 − xn)(x2 − x3) · · · (xn−1 − xn)

=
∏

1≤i<j≤n

(xi − xj).

Any permutation of the variables only changes the sign of P without changing the

value. Let f ∈ Sn, then define f ∗P by

f ∗P (x1, x2, . . . , xn) = P (xf(1), xf(2), . . . , xf(n))

=
∏

1≤i<j≤n

(xf(i) − xf(j)).

Then it can be observed that for any f ∈ Sn, either f ∗P = P or f ∗P = −P .

For example consider a transposition σ = (1 2) ∈ S3. Then

P (x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3)

σ∗P (x1, x2, x3) = (x2 − x1)(x2 − x3)(x1 − x3) = −P (x1, x2, x3).

For another example consider a 3-cycle τ = (1 3 4) in S4. Then

P (x1, x2, x3, x4) = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)

σ∗P (x1, x2, x3, x4) = (x3 − x2)(x3 − x4)(x3 − x1)(x2 − x4)(x2 − x1)(x4 − x1)

= (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)

= P (x1, x2, x3, x4).

Definition. 4.19 A permutation f in Sn

1. is called an odd permutation if f ∗P (x1, x2, . . . , xn) = −P (x1, x2, . . . , xn) and

2. is called an even permutation if f ∗P (x1, x2, . . . , xn) = P (x1, x2, . . . , xn).

Note that any transposition changes the sign of P and hence is an odd permutation.

It is known that any permutation f can be expressed as a product of transpositions

f = σ1σ2 . . . σk. Now applying f on P means applying k number transpositions on

P and will change the sign of P k number of times. Thus f ∗P = (−1)kP , i.e., f is

even if k is even and odd if k is odd. So we can redefine odd and even permutation

as follows:
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Definition. 4.20 A permutation is called an even permutation if it is a product

of even number of transpositions and is called an odd permutation if it is a product

of odd number of transpositions.

Theorem. 4.21 A k-cycle is even if and only if k is odd.

Proof. Any k-cycle (i1 i2 . . . ik) can be expressed as

(i1 i2 . . . ik) = (i1 ik)(i1 ik−1) · · · (i1 i3)(i1 i2)

which is a product of k − 1 transpositions. Hence (i1 i2 . . . ik) is even if and

only if k − 1 is even if and only if k is odd. �

Theorem. 4.22 All the even permutations in Sn forms a subgroup of it.

Proof. Note that the identity permutation i is an even permutation. Also if f ,

g are even permutations then both are product of even number of transpositions

and hence fg is also a product of even number of transpositions, i.e., fg is an even

permutation.

Finally if f is an even permutation then it is a product of even number of transpo-

sitions and hence f−1 is also a product of even number of transpositions. Thus f−1

is an even transposition.

Thus the set of all the even permutations is a subgroup of Sn. �

Definition. 4.23 The subgroup of all the even permutations in Sn is called the

alternating group of order n and is denoted by An.

Note that o(Sn) = n!, half of which are odd permutations and rest half are even

permutations. So o(An) = n!
2

.

4.3 Exercise

1. Decompose the into disjoint cycles and find the parity (odd or even) of the

following permutations. Also find the inverse of each of them.

(a)

(
1 2 3 4 5 6 7 8 9
4 3 5 2 1 6 8 7 9

)
(b)

(
1 2 3 4 5 6 7 8
2 4 6 8 3 5 7 1

) (c)

(
1 2 3 4 5 6 7 8
8 3 5 7 2 4 6 1

)
(d)

(
1 2 3 4 5 6 7 8 9
3 5 7 2 4 6 9 1 8

)
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2. Find the alternating group A4.

3. Find the missing entries so that the following permutations are (i) odd (ii)

even:

(a)

(
1 2 3 4 5 6 7 8
4 5 2 1 6 7

)
(b)

(
1 2 3 4 5 6 7 8
2 3 4 6 8 7

)

5 Lagrange’s Theorem

This is a famous theorem regarding the order of subgroups of finite group. It has

many important consequences.

Theorem. 5.1 If G is a finite group and H is a subgroup of G then order of H

divides the order of G.

Proof. Define a relation ∼ on G as follows: for all a, b ∈ G, a ∼ b iff a−1b ∈ H.

Then (i) since for all a ∈ G, a−1a = e ∈ H, a ∼ a and hence ∼ is reflexive.

(ii) For a, b ∈ G, a ∼ b ⇒ a−1b ∈ H ⇒ (a−1b)−1 ∈ H (since H is a subgroup)

⇒ b−1a ∈ H ⇒ b ∼ a. Hence ∼ is symmetric. (iii) For a, b, c assume that a ∼ b

and b ∼ c. Then a−1b ∈ H and b−1c ∈ H which implies that (a−1b)(b−1c) ∈ H ⇒
a−1(bb−1)c ∈ H ⇒ a−1c ∈ H ⇒ a ∼ c. Thus ∼ is transitive.

Hence the relation ∼ is an equivalence relation and so it divides G into equivalence

classes. Note that for a ∈ G the equivalence class containing a is

[a] = {b ∈ G : a−1b ∈ H} = {b ∈ G : a−1b = h for some ∈ H}

= {b ∈ G : b = ah for some ∈ H} = {ah : h ∈ H}

= aH.

In particular, if a ∈ H then [a] = H. Now, for a ∈ G consider the mapping

ψa : H → [a] defined by ψa(h) = ah for all h ∈ H. For h1, h2 ∈ H, ψa(h1) =

ψa(h2) ⇒ ah1 = ah2 ⇒ h1 = h2. Hence ψa is injective. Also for ah ∈ [a] we have

ψa(h) = ah, thus ψa is surjective. Thus ψa is a bijection from H onto [a] = aH.

H being a finite set, let o(H) = k. So the class [a] has also k number of elements.

Thus every equivalence class have the same number of elements k. If then number

of equivalence classes is m then n = km. Thus k|n, i.e., o(H) divided o(G). �

Definition. 5.2 If G is a finite group and H is a subgroup of G then the number

o(G)/o(H) is called the index of H in G.
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Definition. 5.3 If H is a subgroup of G then for a ∈ G the set aH = {ah : h ∈ H}
is called a left coset of H. The set Ha = {ha : h ∈ H} is called a right coset of H.

Usually a left coset need not be a right coset, however if G is abelian group then for

any a ∈ G and for any subgroup H of G, aH = Ha.

Example. 5.4 Let us consider the group S3 and H = {i, f} where i is the identity

permutation and f = (1 2). Then H is a subgroup of S3. Now S3 = {i, f, g, h, ρ, σ}
where g = (2 3), h = (1 3), ρ = (1 2 3) and σ = (1 3 2).

The left cosets are fH = H, gH, hH, ρH and σH.

gH = {gi, gf} = {g, σ} since gf = (2 3)(1 2) = (1 3 2) = σ.

hH = {hi, hf} = {h, ρ} since hf = (1 3)(1 2) = (1 2 3) = ρ.

ρH = {ρi, ρf} = {ρ, h} since ρf = (1 2 3)(1 2) = (1 3) = h.

σH = {σi, σf} = {σ, g} since σf = (1 3 2)(1 2) = (2 3) = g.

There are three distinct left cosets, gH = σH, hH = ρH and H itself.

The right cosets are Hf = H,Hg,Hh,Hρ and Hσ.

Hg = {ig, fg} = {g, ρ} since fg = (1 2)(2 3) = (1 2 3) = ρ.

Hh = {ih, fh} = {h, σ} since fh = (1 2)(1 3) = (1 3 2) = σ.

Hρ = {iρ, fρ} = {ρ, g} since fρ = (1 2)(1 2 3) = (2 3) = g.

Hσ = {iσ, fσ} = {σ, h} since fσ = (1 2)(1 3 2) = (1 3) = h.

There are three distinct right cosets, Hg = Hρ,Hh = Hσ and H itself.

Hence from the above we see that gH 6= Hg, hH 6= Hh, ρH 6= Hρ, σH 6= Hσ.

Hence all the left cosets are different from the corresponding right coset. However

the number of left cosets is equal to the number of right cosets, which is the index

of H in G, i.e., o(G)/o(H) = 6/2 = 3.

Theorem. 5.5 A group of prime order is cyclic.

Proof. Let G be a group of prime order p. For any a ∈ G, a is not the identity

element of G, the cyclic group 〈a〉 is a non-trivial subgroup of G. By Lagrange’s

Theorem o(〈a〉) divides o(G). Since o(G) = p is prime and o(〈a〉) > 1, we have

o(〈a〉) = p, i.e., G = 〈a〉. Hence G is cyclic. �

Corollary. 5.6 For a finite group G and a ∈ G, o(a) divides o(G).
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5.1 Euler’s Theorem and Fermat’s Theorem

Consider the group Zn the groups of integers modulo n. Then Zn forms a group

under addition modulo n. Now define multiplication on Zn as follows: for [p], [q] ∈ Z,

[p].[q] = [pq]. Though this multiplication is well defined, Zn does not form a group

under multiplication as it contains divisors of zero for example in Z6, [2].[3] = [6] =

[0], but [2] 6= [0], [3] 6= [0].

For n ∈ N, let Un denote the set of all those members [p] for which p is prime to n,

i.e., Un = {[p] ∈ Zn : gcd(p, n) = 1}. Then it can be easily be verified that Un is a

group with respect to multiplication modulo n with the identity element [1].

Definition. 5.7 The group Un = {[p] ∈ Zn : gcd(p, n) = 1} is called the group of

units in Zn.

Example. 5.8 1. U6 = {[1], [5]}, Here only 1 and 5 are the numbers less than 6

and prime to 6.

2. U7 = {[1], [2], [3], [4], [5], [7]}, here 7 being a prime number all non-zero numbers

less than 7 is prime to 7 and hence U7 contains 6 elements.

3. For any prime number p, Up = {[1], [2], . . . , [p − 1]} whcih contains p − 1

elements.

4. U8 = {[1], [3], [5], [7]}.

Definition. 5.9 Euler’s φ-function is defined as follows: For any n ∈ N, n > 1,

φ(n) is the number of positive integers m such that 1 ≤ m < n and gcd(m,n) = 1.

For n = 1, φ(1) is defined as 1.

It immediately follows that if n is a prime number then φ(n) = n− 1.

Hence for n ∈ N the order of the group Un is φ(n).

Theorem. 5.10 (Euler) If a is an integer relatively prime to n then aφ(n) ≡
1(mod n).

Proof. Note that Un is an abelian group under multiplication modulo n and the

order Un is φ(n). Then [a] ∈ Un since gcd(a, n) = 1. Hence [a]φ(n) = [1]. But

[a]φ(n) = [aφ(n)] = [1] if and only if aφ(n) − 1 is divisible by n. This shows that

aφ(n) ≡ 1(mod n). �
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A special case of Euler’s Theorem is the Fermat’s Little Theorem is which states

that if p is prime then for any a not divisible by p, ap−1 is divisible by p.

Theorem. 5.11 (Fermat) If p is a prime number and if p does not divide a, then

ap−1 ≡ 1(mod p).

Proof. Since p is a prime number φ(p) = p − 1 and also gcd(a, p) = 1. Hence

by applying Euler’s Theorem ap−1 ≡ 1(mod p). Hence a.ap−1 ≡ a.1(mod p), i.e.,

ap ≡ a(mod p). �

It can be noted that if p|a then a ≡ 0(mod p) which implies that ap ≡ 0(mod p).

Hence ap ≡ p(mod p) for all integer a.

5.2 Exercise

1. Let G = S4. Find all the right cosets of H = {i, f} where f = (1 2).

2. In Z8 find the right cosets of the subgroup H = {[0], [3], [6]}.

3. Write down the composition table of the group U9. Also find the order of all

the elements of U9.

4. If G = {a1, a2, . . . , an} is a finite abelian group and x = a1a2 · · · an, then show

that x2 = e.

6 Normal Subgroups

It has been observed that for some subgroup H of a group G the left coset may

not be equal to the corresponding right coset. If a subgroup H be such that every

left coset is equal to the corresponding right coset then that subgroup is called an

invariant subgroup or a normal subgroup of G.

Definition. 6.1 A subgroup N of a group G is called a normal subgroup of G if

for all g ∈ G, gNg−1 ⊂ N and is denoted by N C G.

It can be observed that for a subgroup N of a group G, if the condition gNg−1 ⊂ N

is satisfied for all g ∈ G then N = eNe = (g−1g)N(g−1g) = g−1(gNg−1)g ⊂
g−1Ng ⊂ N and hence N = gNg−1. Thus we can alternatively say that N is a

normal subgroup of G if for all g ∈ G, gNg−1 = N .
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Theorem. 6.2 A subgroup N of a group G is a normal subgroup if and only if

every left coset of N is also a right coset.

Proof. Assume that N is a normal subgroup of G. Then for g ∈ G, gNg−1 = N .

Multiplying both sides by g from right, gN = Ng, hence every left coset is also a

right coset.

Conversely, assume that every left coset is also a right coset. Let a ∈ G, Then

aN = Na. This implies that aNa−1 = N . Since this is true for every a ∈ G it

follows that N is a normal subgroup of G. �

If N C G then the set of all the cosets of N is called the quotient set and is denoted

by G/N . It can be remembered that the relation ∼ on G defined by a ∼ b if and

only if ab−1 ∈ N is an equivalence relation and the equivalence classes are exactly

the cosets of N . Hence G/N = G/ ∼.

Theorem. 6.3 If N C G then the G/N is also a group with respect to the operation

Na ·Nb = Nab for all a, b ∈ G.

Proof. First to see whether the operation · is well defined, i.e., if Na = Na′ and

Nb = Nb′ then Na ·Nb = Na′ ·Nb′. If Na = Na′ then aa′−1 ∈ N and if Nb = Nb′

then bb′−1 ∈ N . Now (ab)(a′b′)−1 = (ab)(b′−1a′−1) = a(bb′−1)a′−1 = ana′−1 where

n = bb′−1 ∈ N . Now N being a normal subgroup every left coset is also a right coset,

hence an = n′a for some n′ ∈ N . Thus (ab)(a′b′)−1 = n′aa′−1 = n′n′′ ∈ N where

n′′ = aa′−1 ∈ N . Thus Nab = Na′b′, i.e., Na ·Nb = Na′ ·Nb′, i.e., the operation ·
is well defined.

Closure and associative properties are inherited from those in G. N acts as the

identity element of G/N . in G/N the inverse of NainG/N is Na−1 as Na ·Na−1 =

Naa−1 = Ne = N . Thus G/N is a group. �

Example. 6.4 1. For n ∈ N, nZ is a subgroup of Z, since Z is abelian ever

subgroup is normal subgroup. Then Z/nZ = Zn, the group of residue classes

of Z modulo n.

2. Consider Sn, the symmetric group of order n. The subgroup An of all the even

permutations in Sn is a normal subgroup of Sn.

3. If G is a group of even order and N is a subgroup of G such that o(G)/o(N) = 2

then N is a normal subgroup of G. The only cosets are N and G−N .
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Lagrange’s Theorem states that order of a subgroup divides the order of the group.

Question arises is the converse true? The answer if no in general. For example,

there are groups of order 12 (group of symmetries of a regular tetrahedron) having

no subgroup of order 6. However for some special cases the result is true. One such

result is the Cauchy’s Theorem.

Theorem. 6.5 (Cauchy) If G is a finite abelian group and p is a prime integer

dividing o(G) then G has an element of order p.

Proof. Let o(G) = n, then p | n. We shall prove the theorem by induction. If

n = 1 then there is no prime integer less than n and hence result is vacuously true

for n = 1.

Assume n > 1. If n = p then G is cyclic and hence every generator of G is of order

p. Thus the result is true.

Assume p < n. Then choose a ∈ G such that a 6= e where e is the identity element

of G. If o(a) = p then the result is proved. Now assume that o(a) is a multiple of p,

i.e., o(a) = m = pk for some k ∈ N. Then am = e and hence e = am = akp = (ak)p.

Thus o(ak) = p and hence the result is proved.

Now assume that p - m = o(a). Since a 6= e, 〈a〉 = N is a proper subgroup of G.

Also G being abelian N is a normal subgroup of G. Hence G/N is a group and

1 < o(G/N) < o(G) = n. Now o(G/N) = o(G)/o(N) = n
m

= k(say), i.e., n = mk.

Since p | n and p - m we must have p | k. Thus p | o(G/N). By induction hypothesis

there exists a member Nx ∈ G/N such that o(Nx) = p. Hence (Nx)p = N , i.e.,

Nxp = N which implies that xp ∈ N . Also Nx being a nontrivial element of G/N

we have x 6∈ N . Thus 〈xp〉 is a proper subgroup of 〈x〉 and hence p | o(x). Then

since o(x) is a multiple of p, by the process shown above, o(xl) = p where l = o(x)/p.

This completes the induction.

Hence in all the cases there is an element in G of order p. �

7 Homomorphisms and related theorems

7.1 External Direct Product

Let (G1, ∗1), (G2, ∗2), . . . , (Gn, ∗n) be n groups, G =
∏n

i=1Gi = G1 ×G2 × · · · ×Gn

be the cartesian peoduct of the underlying sets. A binary operation ∗ on G can

be introduced as follows: for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ G, define
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x∗y = (x1 ∗1 y1, x2 ∗2 y2, . . . , xn ∗n yn), i.e., the composition is componentwise. With

this definition one can easily verify the following result.

Theorem. 7.1 If (G1, ∗1), (G2, ∗2), . . . , (Gk, ∗k) are n groups, with o(Gi) = ni, 1 ≤
i ≤ k, and G =

∏k
i=1 then (G, ∗) is a group of order n1n2 . . . nn, where ∗ is defined by:

x ∗ y = (x1 ∗1 y1, x2 ∗2 y2, . . . , xk ∗n yk) for all x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk)

in G.

We omit the proof as any reader can verify it easily.

Definition. 7.2 The group (
∏
Gi, ∗) is called the em external direct product of

the groups (G1, ∗1), (G2, ∗2), . . . , (Gk, ∗k).

Example. 7.3 1. Let G = (Z,+), then G×G with the operation + defined by

(a, b) + (c, d) = (a+ c, b+ d) for all (a, b), (c, d) ∈ Z× Z is the direct product

of Z with itself.

2. Let G1 = S3, the symmetric group of order 3 and G2 = M2, the set of all the

2× 2 matrices over real numbers. Then

G1 ×G2 = {(f, ( a bc d )) : f ∈ S3, [ a bc d ] ∈M2}.

The operation ∗ on G1 × G2 is defined as follows: for all (f, [ a bc d ]), (g,
[
a′ b′

c′ d′

]
)

in G1×G2, (f, [ a bc d ]) ∗ (g,
[
a′ b′

c′ d′

]
) = (fg,

[
aa′+bc′ ab′+bd′

ca′+dc′ cb′+dd′,

]
). With this operation

G1 ×G2 is a group.

Here we note a few properties of direct product without proof. Some other properties

will be dealt in course of time.

Theorem. 7.4 The order of the group
∏n

i=1(Gi, ∗i) is o(G1).o(G2). . . . .o(Gn).

Theorem. 7.5 The external product of the groups (G1, ∗1), (G2, ∗2), . . . , (Gn, ∗n) is

abelian if and only if each (Gi, ∗i) is abelian.

Theorem. 7.6 Let G be the external product of the groups (G1, ∗1), (G2, ∗2), . . . ,
(Gn, ∗n), ek be the identity element of Gk, 1 ≤ k ≤ n. Then for each i, i ≤ i ≤ n,

the set G′i = {(e1, e2, . . . , ei−1, xi, ei+1, . . . , en) : xi ∈ Gi}, is a normal subgroup of

G.
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7.2 Homomorphisms

Homomorphisms of groups are the functions between the groups which preserve the

compositions of the groups.

Definition. 7.7 Let (G, ◦), (G′, ∗) be two groups. Then a mapping φ : G→ G′ is

called a homomorphism if for all a, b ∈ G, φ(a ◦ b) = φ(a) ∗ φ(b).

Definition. 7.8 Let φ : G → G′ be a homomorphism. If φ is one-one (injective)

then it is called a monomorphism. If φ is onto (surjective) then it is called a epi-

morphism. If φ is one-one and onto, i.e., bijective then it is called an isomorphism.

Two groups G,G′ are said to be isomorphic if there exists an isomorphism from G

onto G′ and is denoted by G ' G′.

Example. 7.9 1. For every group G the identity map 1G : G → G, defined by

1G(x) = x for all x ∈ G, is a homomorphism, in fact is an isomorphism.

2. The function f : G → G′ defined by f(x) = e′ for all x ∈ G, where e′ is the

identity element of G′, is a homomorphism.

3. For n ∈ N the mapping φn : (Z,+) → (Z,+) defined by φn(x) = nx for all

x ∈ Z is a homomorphism.

4. Let S1 be the multiplicative group {z ∈ C : |z| = 1}. The mapping φ :

(R,+) → (S1, ·) defined by φ(t) = cos t + i sin t, for all t ∈ R. Then for

t1, t2 ∈ R, φ(t1 + t2) = cos(t1 + t2) + i sin(t1 + t2) = (cos t1 + i sin t1) · (cos t2 +

i sin t2) = φ(t1) · φ(t2). Thus φ is a homomorphism.

Theorem. 7.10 If φ : G → G′ is a homomorphism then (i) φ(e) = e′ where e

and e′ are respectively the identity elements of G and G′ and (ii) for all x ∈ G,

φ(x−1) = (φ(x))−1.

Proof. (i) For an arbitrary x ∈ G, φ(x) = φ(xe) = φ(x)φ(e). By left cancellation

on G′ we have e′ = φ(e). (ii) For x ∈ G, e′ = φ(e) = φ(xx−1) = φ(x)φ(x−1). Hence

φ(x−1) is the inverse of φ(x), i.e., (φ(x))−1 = φ(x−1). �

Theorem. 7.11 If φ : G → G′ and ψ : G′ → G′′ are two homomorphisms the the

composition ψ ◦ φ : G→ G′′ is also a homomorphism.

Proof is easy and hence omitted.
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Theorem. 7.12 If φ : G→ G′ is a homomorphism then φ(G) = {φ(x) : x ∈ G} is

a subgroup of G′.

Proof. Take y1, y2 ∈ φ(G). Then there exist x1, x2 ∈ G such that φ(x1) = y1 and

φ(x2) = y2. Now y1y
−1
2 = φ(x1)(φ(x2))

−1 = φ(x1)φ(x−12 ) = φ(x1x
−1
2 ). Since G is a

group, x1x
−1
2 ∈ G and hence y1y

−1
2 ∈ φ(G). Thus φ(G) is a subgroup of G′. �

Theorem. 7.13 (Cayley) Every group is isomorphic to a subgroup of some sym-

metric group A(S).

Proof. Recall that for a non-empty set S, the symmetric group A(S) is the set of all

bijections from S to S, where the binary operation is the composition of mappings.

Here we take S = G itself. For each a ∈ G define a mapping Ta : G → G by

Ta(x) = ax for all x ∈ G. Then we have the following observations:

1. For x1, x2 ∈ G, Ta(x1) = Ta(x2)⇒ ax1 = ax2 ⇒ x1 = x2. Thus Ta is injective.

2. For y ∈ G take x = a−1y so that Ta(x) = ax = aa−1y = y, hence Ta is onto.

Thus for each a ∈ G, Ta ∈ A(G). Define a mapping φ : G→ A(G) by φ(a) = Ta for

all a ∈ G. We shall show that φ is a homomorphism.

For a, b ∈ G, x ∈ G, Ta ◦ Tb(x) = Ta(Tb(x)) = Ta(bx) = a(bx) = (ab)x = Tab(x).

Hence Ta ◦ Tb = Tab. Now, φ(ab) = Tab = Ta ◦ Tb = φ(a) ◦ φ(b). Thus φ is a

homomorphism.

Hence φ(G) = {Ta : a ∈ G} is a subgroup of A(G).

Also for a, b ∈ G, φ(a) = φ(b)⇒ Ta = Tb ⇒ Ta(x) = Tb(x) for all x ∈ G ⇒ ax = bx

for all x ∈ G and hence a = b. Thus φ is injective. Hence φ : G → φ(G) is an

isomorphism. Thus G is isomorphic to the subgroup φ(G) of A(S). �

Definition. 7.14 Let φ : G → G′ be a homomorphism Then the kernel of the

homomorphism φ is defined as the set kerφ = {x ∈ G : φ(x) = e′}, where e′ is the

identity element of G′.

Theorem. 7.15 For a homomorphism φ : G → G′, the kernel kerφ is a normal

subgroup of G.

Proof. If a, b ∈ kerφ then φ(a) = φ(b) = e′ where e′ is the identity element of G′.

Hence φ(ab−1) = φ(a)φ(b−1) = φ(a)(φ(b))−1 = e′e′−1 = e′. Hence ab−1 ∈ kerφ. This

shows that kerφ is a subgroup of G.
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For g ∈ G, a ∈ kerφ, we have φ(gag−1) = φ(g)φ(a)φ(g−1) = φ(g)e′φ(g−1) =

φ(g)φ(g−1) = φ(gg−1) = φ(e) = e′. Thus gag−1 ∈ kerφ for all g ∈ G, for all

a ∈ kerφ. Thus kerφ is a normal subgroup of G. �

Corollary. 7.16 A homomorphism φ : G → G′ is a monomorphism if and only

if kerφ = {e}, where e is the identity element of G.

Proof. Since φ(e) = e′ we have e ∈ kerφ. Also φ is injective if and only if

φ−1(e′) can contain at most one element. Hence φ is a monomorphism if and only

if kerφ = {e}. �

Example. 7.17 1. Let (G1, ∗1), (G2, ∗2), . . . , (Gn, ∗n) be n groups andG =
∏n

i=1Gi

be their external direct product. For 1 ≤ k ≤ n define πk : G→ Gk by

πk(x1, x2, . . . , xn) = xk for all (x1, x2, . . . , xn) ∈ G

Then it can easily be verified that πk is a homomorphism for each k, 1 ≤ k ≤ n.

Also

kerπk = {(x1, x2, . . . , xk−1, ek, xk+1, . . . , xn) : xi ∈ Gi : 1 ≤ i ≤ n}

= G1 ×G2 × · · · ×Gk−1 × {ek} ×Gk+1 × · · · ×Gn.

Here ek is the identity element of (Gk, ∗k).

2. Let (G1, ∗1), (G2, ∗2), . . . , (Gn, ∗n) be n groups and G =
∏n

i=1Gi be their ex-

ternal direct product. For 1 ≤ k ≤ n define φk : Gk → G by

φk(x) = (e1, e2, . . . , ek−1, x, ek+1, . . . , en), for all x ∈ Gk,

where ei is the identity element of (Gi, ∗i). Then φk is a monomorphism of Gk

into G. If we put G′k = φk(G) = {e1}×{e2}×· · · {ek−1}×Gk×{ek+1}×· · · {en}
then G′k is isomorphic to Gk.

3. We can prove that G′k, as defined above, is a normal subgroup of G. Define

Gk = G1 × · · ·Gk−1 ×Gk+1 × · · · ×Gn and a mapping ψk : G→ Gk by

ψk(x1, x2, . . . , xn) = (x1, x2, . . . , xk−1, xk+1, . . . , xn),

for all (x1, x2, . . . , xn) ∈ G,

i.e., ψk just erases the k-th component of (x1, x2, . . . , xn). Then it is easy to

verify that ψk is a homomorphism and kerψk = G′k. Hence G′k is a normal

subgroup of G.
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7.3 Isomorphism Theorems

Here we study the three isomorphism theorems of groups. We begin with the fol-

lowing.

Theorem. 7.18 (First Isomorphism Theorem) Let φ : G → G′ be a homo-

morphism from G onto G′ with kernel K. Then the quotient group G/K is isomor-

phic to G′.

Proof. Define a map ψ : G/K → G′ by ψ(Ka) = φ(a) for all Ka ∈ G/K. First we

show that ψ is well defined, i.e., if a, b ∈ G such that Ka = Kb then ψ(Ka) = ψ(Kb).

Choose a, b ∈ G such that Ka = Kb. Then Kab−1 = K, i.e., ab−1 ∈ K. Since

K = kerφ, φ(ab−1) = e′ where e′ is the identity element of G′. Thus, φ(a)φ(b−1) = e′

which implies that φ(a)(φ(b))−1 = e′, i.e., φ(a) = φ(b). Hence ψ(Ka) = ψ(Kb).

To show that ψ is a homomorphism, let Ka,Kb ∈ G/K. Then ψ(Ka.Kb) =

ψ(Kab) = φ(ab) = φ(a)φ(b) = ψ(Ka)ψ(Kb). Thus ψ is a homomorphism.

To show ψ is injective, take Ka,Kb ∈ G/K such that ψ(Ka) = ψ(Kb). Then

φ(a) = φ(b) which implies that φ(a)(φ(b))−1 = e′, i.e., φ(ab−1) = e′ and hence

ab−1 ∈ kerφ = K. This implies that Ka = Kb. Thus ψ is injective.

Finally, for any c ∈ G′, since φ is onto, there exists a ∈ G such that φ(a) = c, hence

ψ(Ka) = c. Thus ψ is onto.

So ψ is an isomorphism of G/K onto G′, i.e., G/K is isomorphic to G′. �

Theorem. 7.19 (Correspondence Theorem) Assume that φ : G → G′ is a

homomorphism of G onto G with kernel K. Let N ′ be a subgroup of G′. Define

N = φ−1(N ′) = {a ∈ G : φ(a) ∈ N ′}. Then N is a subgroup of G such that K ⊂ N

and N/K is isomorphic to N ′. Moreover if N ′ is a normal subgroup of G′ then N

is a normal subgroup of G.

Proof. Take a, b ∈ N . Then φ(a), φ(b) ∈ N ′. Since N ′ is a subgroup of G′ we have

φ(a)(φ(b))−1 ∈ N ′, i.e., φ(ab−1 ∈ N ′ and hence ab−1 ∈ N . Thus N is a subgroup of

G. Also if a ∈ K then φ(a) = e′ ∈ N ′ which implies that a ∈ N . Thus K ⊂ N .

Since K C G and K ⊂ N ⊂ G we have K C N . Let φN denote the restriction of φ

on N . Then φN : N → N ′ is an onto homomorphism with kernel K, hence by first

isomorphism we have N/K ' N ′.

Finally, if N ′ C G′ then for any a ∈ G, for any y ∈ N ′ we have φ(a)y(φ(a))−1 ∈ N ′,
i.e., φ(a)yφ(a−1) ∈ N ′. In particular, if x ∈ N then φ(x) ∈ N ′, hence we have
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φ(a)φ(x)φ(a−1) ∈ N ′, or φ(axa−1) ∈ N ′ and hence axa−1 ∈ N . Since this is true for

any a ∈ G for any x ∈ N we have N C G. �

The above result says that an onto homomorphism φ induces an one-to-one corre-

spondence between the subgroups of G′ and those subgroups of G which contain the

kernel K. Moreover this correspondence assigns normal subgroups of G′ to normal

subgroups of G containing K.

Theorem. 7.20 (Second isomorphism Theorem) let H be a subgroup of G

and N be a normal subgroup of G. Then HN = {hn : h ∈ H,n ∈ N} is a subgroup

of G and H ∩N is a normal subgroup of H and H/(H ∩N) ' HN/N .

Proof. First to show that HN is a subgroup of G. Note that e ∈ H, e ∈ N

hence e ∈ HN , thus HN 6= ∅. Let x = h1n1, y = h2n2 ∈ HN . Then xy−1 =

(h1n1)(h2n2)
−1 = (h1n1)(n

−1
2 h−12 ) = h1(n1n

−1
2 )h−12 = h1n3h

−1
2 where n3 = n1n

−1
2 ∈

N . N being a normal subgroup Nh−12 = h−12 N hence there exists there is n4 ∈ N
such that n2h

−1
2 = h−12 n4. Thus xy−1 = h1n3h

−1
2 = h1h

−1
2 n4 = h3n4 ∈ HN where

h3 = h1h
−1
2 ∈ H. Thus HN is a subgroup of G.

Note that N C G and N < HN < G, hence N C HN . So the quotient group

HN/N is defined. Consider the mapping φ : H → HN/N defined by φ(h) = hN

for all h ∈ H. For h ∈ H,n ∈ N hnN = hN since n ∈ N . Let h1, h2 ∈ H, then

φ(h1h2) = h1h2N = h1Nh2N = φ(h1)φ(h2). Thus φ is a homomorphism. Now,

kerφ = {h ∈ H : φ(h) = eHN/N} = {h ∈ H : φ(h) = N}

= {h ∈ H : hN = N} = {h ∈ H : h ∈ N} = H ∩N.

Hence H∩N is a normal subgroup of H and by first isomorphism theorem H/ kerφ '
Imageφ, i.e., H/(H ∩N) ' HN/N . �

Theorem. 7.21 (Third Isomorphism Theorem) If φ : G → G′ is an onto ho-

momorphism with kerφ = K and N ′ C G′ then N = {x ∈ G : φ(x) ∈ N ′} is a nor-

mal subgroup of G containing K and G/N ' G′/N ′. Equivalently, (G/K)/(N/K) '
G/N .

Proof. Define a mapping ψ : G → G′/N ′ by φ(a) = φ(a)N ′ for all a ∈ G. Then

for a, b ∈ G, ψ(ab) = φ(ab)N ′ = φ(a)φ(b)N ′ = φ(a)N ′φ(b)N ′ = ψ(a)ψ(b). Thus ψ

is a homomorphism. Also

kerψ = {a ∈ G : ψ(a) = N ′} = {a ∈ G : φ(a)N = N ′}

= {a ∈ G : φ(a) ∈ N ′} = N.
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Hence by first isomorphism G/N ' G′/N ′. Also since kerφ = K and the restriction

of φonN is a homomorphism with kernel K we again have G/K ' G′ and N/K '
N ′. Hence G′/N ′ ' (G/K)/(N/K). Thus G/N ' (G/K)/(N/K). �


