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. .

Syllabus

Unit 4: Fourier series: Definition of Fourier coefficients and series, Reimann Lebesgue lemma,

Bessel’s inequality, Parseval’s identity, Dirichlet’s condition. Examples of Fourier expan-

sions and summation results for series.

Motivation

Consider the vector space Rn and it standard basis e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),

. . ., en = (0, 0, 0, . . . , 1). For n = 3, e1, e2, e3 are usually written as î, ĵ, k̂ respectively. A vector

x = (x1, x2, . . . , xn) in Rn can be written as x = x1e1+x2e2+ · · ·+xnen, as a linear combination

of the basis vectors. It can be observed that the coefficients x1, x2, . . . , xn are obtained as

xk = x · ek, 1 ≤ k ≤ n, where the dot product ‘·’ is defined by, for x = (x1, x2, . . . , xn) and

y = (y1, y2, . . . , yn) in Rn, x · y = x1y1 + x2y2 + · · ·+ xnyn. Here another things to observe that

(i) the basis vectors are normalised, i.e., ‖ek‖ =
√
ek · ek = 1 and (ii) they are orthogonal to

each other, i.e., ej · ek = 0 whenever j 6= k.

The concept can be generalized for an arbitrary vector space V where an inner product is defined

(called an inner product space). Here, for the time being, we consider only finite dimensional

vector spaces over the field of real numbers. A function 〈 , 〉 : V × V → R is called an inner

product if (i) 〈u, v〉 = 〈v, u〉, (ii) 〈u + v, w〉 = 〈u,w〉 + 〈v, w〉, (iii) 〈cu, v〉 = c〈u, v〉 and (iv)

〈u, u〉 ≥ 0, where u, v, w ∈ V and c ∈ R. It can be observed that the dot product is an example

of inner product, 〈u, v〉 = u · v, u, v ∈ Rn. Two vectors u, v are called orthogonal if 〈u, v〉 = 0.

For a vector u ∈ V , its norm is defined as ‖u‖ =
√
〈u, u〉 (where in R3 it is called the modulus

of the vector).

Let {α1, α2, . . . , αn} be an orthogonal basis of V (such a basis exists – it can be proved), i.e.,

〈αi, αj〉 = 0 for i 6= j, 1 ≤ i ≤ j ≤ n. Then an arbitrary vector α ∈ V can be expressed as

1
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α = c1α1 + c2α2 + · · ·+ cnαn where c1, c2, . . . , cn are scalars. Taking inner product with αi on

both sides we have 〈α, αi〉 = 〈c1α1, αi〉+ 〈c2α2, αi〉+ · · ·+ 〈cnαn, αi〉 = c1〈α1, αi〉+ c2〈α2, αi〉+
· · ·+ cn〈αn, αi〉 = ci〈αi, αi〉 = ci‖αi‖2. Hence the scalars ci are calculated as ci ‖αi‖2 = 〈α, αi〉
or, ci = 1

‖αi‖2 〈α, αi〉, i = 1, 2, . . . , n. Thus, we can write

α =
n∑
i=1

〈α, αi〉
‖αi‖2

αi =
〈α, α1〉
‖α1‖2

α1 +
〈α, α2〉
‖α2‖2

α2 + · · ·+ 〈α, αn〉
‖αn‖2

αn.

When we try to extend this result to an infinite dimensional inner product spaces, the sum

will be an infinite series and the question of convergence will arise. Under certain condition

(completeness, totality etc.) the series converges and we can write in such a space V , α ∈ V ,

α =
∑∞

n=1 cnαn, where {αn : n ∈ N} is an orthogonal basis for V and the scalars cn are

calculated as cn = 〈α,αn〉
〈αn,αn〉 , n ∈ N.

Definition and Determination of Fourier Series

It can be verified that the set R([a, b]) of all the integrable functions defined on an interval [a, b]

is a vector space over the field of real numbers. An inner product on R([a, b]) can be defined

as 〈f, g〉 =

∫ b

a

f(x)g(x) dx, for all f, g ∈ R([a, b]).

The orthogonal relations of the trigonometric functions sinnx, cosnx, m,n ∈ N, in the interval

[−π, π] are as follows:

Theorem. 1 For m,n ∈ N,

(i)

∫ π

−π
sinmx dx =

∫ π

−π
cosmx dx = 0 and (ii)

∫ π

−π
sinmx cosnx dx = 0.

Proof. Easy verification. �

Theorem. 2 For m,n ∈ N,

(i)

∫ π

−π
sinmx sinnx dx = 0, m 6= n (ii)

∫ π

−π
sinmx sinnx dx = 0, m 6= n

= π, m = n = π, m = n

Proof. Easy verification. �

In terms of inner product these can be written as 〈sinmx, sinnx〉 = 〈cosmx, cosnx〉 = 0

if m 6= n and 〈sinnx, sinnx〉 = 〈cosnx, cosnx〉 = π, also 〈sinmx, cosnx〉 = 〈1, sinnx〉 =

〈1, cosnx〉 = 0 for all m,n ∈ N.
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Definition. 3 A trigonometric series of the form 1
2
a0 +

∞∑
n=1

(an cosnx + bn sinnx), where the

coefficients an, bn are independent of x, is called a Fourier Series, the coefficients a0, an, bn, n ∈
N, are called the Fourier coefficients of the series.

Definition. 4 For an integrable function f : [−π, π] → R, the series 1
2
a0 +

∞∑
n=1

(an cosnx +

bn sinnx) is called the Fourier Series of the function f where the Fourier coefficients are defined

by

an =
1

π

∫ π

−π
f(x) cosnx dx, n = 0, 1, 2, . . . and bn =

1

π

∫ π

−π
f(x) sinnx dx, n = 1, 2, . . . ,

and it is written as f ∼ 1
2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx).

It can be noted that in terms of the inner product defined above, an = 1
π
〈f(x), cosnx〉 and

bn = 1
π
〈f(x), sinnx〉.

Theorem. 5 If the series 1
2
a0 +

∞∑
n=1

(an cosnx + bn sinnx) converges uniformly to a function

f in the interval [−π, π] then the Fourier series of f is 1
2
a0 +

∞∑
n=1

(an cosnx + bn sinnx) where

an = 1
π

∫ π
−π f(x) cosnx dx, n = 0, 1, 2, . . . and bn = 1

π

∫ π
−π f(x) sinnx dx, n = 1, 2, . . ..

Proof. Given that

f(x) =
1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx). (1)

Since the convergence is uniform, term by term integration is possible. So,

∫ π

−π
f(x) dx =

∫ π

−π

1

2
a0 dx+

∫ π

−π

∞∑
n=1

(an cosnx+ bn sinnx) dx

=
1

2
a0

∫ π

−π
dx+

∞∑
n=1

[
an

∫ π

−π
cosnx dx+ bn

∫ π

−π
sinnx dx

]
= πa0 (by using Theorem 1)

Hence a0 =
1

π

∫ π

−π
f(x) dx.

Let k be a positive integer, multiplying both sides of (1) by cos kx the series becomes

f(x) cos kx =
1

2
a0 cos kx+

∞∑
n=1

(an cosnx cos kx+ bn sinnx cos kx). (2)
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It can be shown that this series also is uniformly convergent and hence term by term integration

is allowed. Integrating both sides in the interval [−π, π] we have

∫ π

−π
f(x) cos kx dx =

∫ π

−π

1

2
a0 cos kx dx+

∫ π

−π

∞∑
n=1

(an cosnx+ bn sinnx) cos kx dx

=
1

2
a0

∫ π

−π
cos kx dx+

∞∑
n=1

(
an

∫ π

−π
cosnx cos kx dx+ bn

∫ π

−π
sinnx cos kx dx

)
= ak

∫ π

−π
cos kx cos kx dx = πak (using Theorems 1 and 2).

Hence ak =
1

π

∫ π

−π
f(x) cos kx dx for all k ∈ N. Similarly, multiplying both sides of (1) by sin kx

and integrating over [−π, π], we obtain that bk =
1

π

∫ π

−π
f(x) sin kx dx, for all k ∈ N. Hence the

Fourier series of f is 1
2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx). �

Remark. 6 It is established that if the series 1
2
a0 +

∞∑
n=1

(an cosnx + bn sinnx) converges uni-

formly to a function f then the Fourier series of f is the given series, i.e. f is equal to its

Fourier series. But for an arbitrary integrable function f the Fourier series of f may not be

convergent in [−π, π]. Even, if converges, the sum function may not be be equal to f in [−π, π].

Definition. 7 A function f : R → R is called a periodic function if there exists p ∈ R such

that f(x + p) = f(x) for all x ∈ R. The smallest positive number p satisfying the relation

f(x+ p) = f(x) for all x in R is called the period of f .

For any n ∈ N the functions sinnx, cosnx are periodic functions having the period 2π
n

and, in

particular, the functions sinx, cosx are of period 2π. Since the Fourier series of a function is a

linear combination of sinnx, cosnx, the sum function must be periodic of period 2π.

Example. 8 Find the Fourier series for the function f(x) = x,−π ≤ x ≤ π.

Let 1
2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx) be the Fourier series of the given function. Then

a0 =
1

π

∫ π

−π
x dx = 0

an =
1

π

∫ π

−π
x cosnx dx = 0 (since x cosnx is an odd function)
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bn =
1

π

∫ π

−π
x sinnx dx =

2

π

∫ π

0

x sinnx dx

=
2

π

[
x

∫
sinnx dx−

∫
(1

∫
sinnx dx) dx

]π
0

=
2

π

[
x
− cosnx

n
+

∫
cosnx

n
dx

]π
0

=
2

π

(
−π cosnπ

n
+

[
sinnπ

n2

]π
0

)
=

2(−1)n+1

n
.

Hence the Fourier series of the function f is
∞∑
n=1

2(−1)n+1

n
sinnx, i.e., f(x) ∼

∞∑
n=1

2(−1)n+1

n
sinnx.

Below we draw the graph of the function y = x along with the partial sum of the series for n

terms, taking n = 3, 10 and n = 50.
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It is clear from the graph that the series converges to f everywhere in (−π, π) but does not

converge at the endpoints x = −π and x = π.

It has already been mentioned that as each of the functions sinnx, cosnx are periodic of period
2π
n

and hence repeats their values in the interval 2π, the sum of the Fourier series must be

periodic of period 2π. If f : [−π, π] → R is a function we can extend it over whole of R.
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To make f periodic we shall have f(−π) = f(π) and hence we take the domain of f a half

open interval, either (−π, π] or [−π, π). We take the former one, i.e., f : (−π, π] → R. Since

R = ∪{((2k − 1)π, (2k + 1)π] : k ∈ Z}, for x ∈ ((2k − 1)π, (2k + 1)π], x − 2kπ ∈ (−π, π]. We

extend f by, f(x) = f(x− 2kπ) for all x ∈ ((2k− 1)π, (2k+ 1)π], k ∈ Z. This makes f periodic

over R.

Below we give an example of a curve defined on (−π, π] and its Fourier series extended over R.

Example. 9 The Fourier Series of the function f(x) = −1,−π < x < 0, f(x) = 1, 0 ≤ x ≤ π

extended periodically over R.

As before, if 1
2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx) is the Fourier series, then

a0 =
1

π

∫ π

−π
f(x) dx =

1

π

(∫ 0

−π
(−1) dx+

∫ π

0

(1) dx

)
= 0

an =
1

π

∫ π

−π
f(x) cosnx dx =

1

π

(∫ 0

−π
(− cosnx) dx+

∫ π

0

cosnx dx

)
= 0

bn =
1

π

∫ π

−π
f(x) sinnx dx =

1

π

(∫ 0

−π
(− sinnx) dx+

∫ π

0

sinnx dx

)
=

2− 2 cosnπ

nπ
=

2

nπ
(1− (−1)n).

Hence f(x) ∼
∞∑
n=1

2
nπ

(1− (−1)n) sinnx.
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The graph of the partial sum of the series for n terms, taking n = 3, 10 and n = 100 is given

above.

Here, also, we see that the series converges everywhere in R except at the points x = kπ, k ∈ Z.

Note that the function is discontinuous at these points but the partial sums of the series is

continuous.

Example. 10 The Fourier Series of the function f(x) = |x|,−π < x ≤ π extended periodically

over R.

The function f(x) = |x| is defined by f(x) = −x, if x < 0 and f(x) = x if x ≥ 0, which is an

even function in [−π, π]. So a0 = 1
π

∫ π
−π f(x) dx = 2

π

∫ π
0
x dx = π, an = 1

π

∫ π
−π f(x) cosnx dx =

2
π

∫ π
0
x cosnx = 2

πn2 ((−1)n − 1) for all n ∈ N. Also bn =
∫ π
−π f(x) sinnx dx = 0 for all n ∈ N.

Hence the Fourier series for f(x) = |x| is 1
2
π +

∞∑
n=1

2
πn2 ((−1)n − 1) cosnx.

The graph of the partial sums for n = 2, n = 5 and n = 100 along with the graph of the

function extended periodically over R is shown below.
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It is clear from the graph that the sum of the series converges to f everywhere.

Problem. 11 Find the Fourier series of the following functions:

1. f(x) = | cosx|,−π ≤ x ≤ π.

2. f(x) = 0, −π ≤ x < 0
= x, 0 ≤ x ≤ π.

3. f(x) = x3,−π ≤ x ≤ π.

4. f(x) = e2x,−π ≤ x ≤ π.

5. f(x) = x sinx,−π ≤ x ≤ π.

6. f(x) = x3,−π ≤ x ≤ π.

7. f(x) = x+ sinx,−π ≤ x ≤ π.

8. f(x) = x+ x2,−π ≤ x ≤ π.

Fourier Series of odd and even functions

We know that if f : [−a, a]→ R is an even function, i.e., f(−x) = f(x) for all x ∈ [−a, a], then∫ a
−a f(x) dx = 2

∫ a
0
f(x) dx and if f : [−a, a] → R is an odd function, i.e., f(−x) = −f(x) for

all x ∈ [−a, a], then
∫ a
−a f(x) dx = 0, provided f is integrable. Also it is known that cosx is an

even function and sinx is an odd function. It immediately follows that the product of two odd

functions or the product of two even functions is an even function and the product of an even

function and an odd function is an odd function.

Assume that f : [−π, π] → R is an odd function. Then f(x) cosnx is an odd function and

f(x) sinnx is an even function. Hence a0 =
1

π

∫ π

−π
f(x) dx = 0 and an =

1

π

∫ π

−π
f(x) cosnx dx =

0 for all n ∈ N. Also bn =
1

π

∫ π

−π
f(x) sinnx dx =

2

π

∫ π

0

f(x) sinnx dx for all n ∈ N. Hence the

Fourier Series of an odd function f we have an = 0 for all n ≥ 0 and its Fourier Series becomes
∞∑
n=1

bn sinnx, which we call a series of sine functions or briefly a sine series.

In a similar manner we can show that for an even function f defined on [−π, π], bn = 0 for all

n ∈ N and hence its Fourier series becomes 1
2
a0 +

∞∑
n=1

an cosnx which is called a series of cosine

functions or briefly a cosine series.

In the examples 8 and 9 the functions were odd functions whereas in example 10 the function

was |x| which is an even function.

Half-Range Series

When a function f is defined in the interval [0, π] it can be extended over [−π, π] and hence its

Fourier series can be determined. To do this the value of f to be defined for x in [−π, 0).

Usually the following three ways are followed:
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1. (i) Define f(x) = f(−x) for all x ∈ [−π, 0), then f becomes an even function in [−π, π]

and its Fourier series is a cosine series.

2. (ii) Define f(x) = −f(−x) for all x ∈ [−π, 0), then f becomes an odd function in [−π, π]

and hence its Fourier series is a sine series.

3. (iii) Define f(x) = 0 for all x ∈ [−π, 0). Then f becomes neither odd nor even in [−π, π]

unless f is identically zero in that interval.

Example. 12 Consider the function f(x) = x2, 0 ≤ x ≤ π. We shall extend f in [π, π] in the

three ways stated above.

1. Define f(x) = x2 for all x ∈ [−π, π]. Then f being even function bn = 0 for all n in N.

a0 =
1

π

∫ π

−π
x2 dx = 2

1

π

[
x3

3

]π
0

=
2

3
π2.

an =
1

π

∫ π

−π
x2 cosnx dx =

2

π

∫ π

0

x2 cosnx dx

=
2

π

[
x2
∫

cosnx dx−
∫

2x
sinnx

n
dx

]π
0

=
2

π

[
x2

sinnx

n

]π
0

− 4

nπ

[∫
x sinnx dx

]π
0

= 0− 4

nπ

[
x
− cosnx

n
−
∫

1 · cosnx

n
dx

]π
0

=
4

n2
cosnπ = (−1)n

4

n2
.

Hence the Fourier series of the function becomes

1

2
a0 +

∞∑
n=1

an cosnx =
1

3
π2 +

∞∑
n=1

(−1)n
4

n2
cosnx,

which is a cosine series.

The graph of the partial sums of the Fourier series and the function is given here.
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2. Define f(x) = −x2 for all x ∈ [−π, 0] and f(x) = x2 for all x ∈ [0, π]. Then f is an odd

function and hence an = 0 for all n ∈ N.

bn =
1

π

∫ π

−π
f(x) sinnx dx =

1

π

∫ 0

−π
(−x2) sinnx dx+

1

π

∫ π

0

x2 sinnx dx

=
2

π

∫ π

0

x2 sinnx dx (putting x = −y in the first integral)

=
2

π

[
x2
∫

sinnx dx−
∫

2x
− cosnx

n
dx

]π
0

=
2

π

[
x2
− cosnx

n

]π
0

+
4

nπ

[∫
x cosnx dx

]π
0

=
2π2

nπ
(−1)n+1 +

4

nπ

[
x

sinnx

n
−
∫

1
sinnx

n
dx

]π
0

=
2π

n
(−1)n+1 +

4

n3π
((−1)n − 1).

Hence f(x) ∼
∞∑
n=1

[
2π

n
(−1)n+1 +

4

n3π
((−1)n − 1)] sinnx, which is a sine series.
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The graph of the partial sums of the Fourier series and the function is given here.
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3. In this case define f(x) = 0 for −π ≤ x < 0, and f(x) = x2 for 0 ≤ x ≤ π. f is neither

even nor odd.

a0 =
1

π

∫ π

−π
f(x) dx =

1

π

∫ π

0

x2 dx =
π2

3
.

an =
1

π

∫ π

−π
f(x) cosnx dx =

1

π

∫ π

0

x2 cosnx dx

= (−1)n
2

n2
.

bn =
1

π

∫ π

−π
f(x) sinnx dx =

1

π

∫ π

0

x2 sinnx dx

=
π

n
(−1)n+1 +

2

n3π
((−1)n − 1).

Hence the Fourier series is

π2

6
+
∞∑
n=1

[
(−1)n

2

n2
cosnx+

(
π

n
(−1)n+1 +

2

n3π
((−1)n − 1)

)
sinnx

]
.
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The graph of the partial sums of the Fourier series for n = 5, n = 25 and n = 100 and

the graph of the function are given below.
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Partial Sum of 100 terms
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=

f(
x
)

The graph of the function y=f(x)

Problem. 13 Find the cosine series of the following functions:

1. f(x) =

{
1, 0 ≤ x < π

2

0, π
2
≤ x ≤ π

2. f(x) = sin x, 0 ≤ x ≤ π.

3. f(x) = x, 0 ≤ x ≤ π.

4. f(x) = x3, 0 ≤ x ≤ π.

Problem. 14 Find the sine series of the following functions:

1. f(x) =

{
1, 0 ≤ x < π

2

−1, π
2
≤ x ≤ π

2. f(x) = cos x, 0 ≤ x ≤ π.

3. f(x) = x, 0 ≤ x ≤ π.

4. f(x) = x3, 0 ≤ x ≤ π.
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Fourier Series in an arbitrary interval

Let a function f be defined and integrable in an interval [−L,L]. Consider a transformation

x = h(y) = Ly
π
,−π ≤ y ≤ π. Then g = f ◦ h is defined on [−π, π] and integrable there.

The Fourier series of g is 1
2
a0 +

∞∑
n=1

(an cosny + bn sinny) where an =
1

π

∫ π

−π
g(y) cosny dy and

bn =
1

π

∫ π

−π
g(y) sinny dy. We can revert from the variable y to x by the formula y = πx

L
. Then

g(y) = g(πx
L

) = f(x) and when y = π, x = L, when y = −π, x = −L, also dy = π
L

dx. Hence

the Fourier coefficients become

an =
1

π

∫ L

−L
f(x) cos(nπx

L
) π
L

dx =
1

L

∫ L

−L
f(x) cos nπx

L
dx

bn =
1

π

∫ L

−L
f(x) sin(nπx

L
) π
L

dx =
1

L

∫ L

−L
f(x) sin nπx

L
dx.

The Fourier series of f becomes

f(x) ∼ 1

2
a0 +

∞∑
n=1

(an cos nπx
L

+ bn sin nπx
L

), x ∈ [−L,L].

Example. 15 Fourier series of the function f : [−2, 2]→ R defined by,

f(x) =

{
x+ 1, −2 ≤ x < 0
x− 1, 0 ≤ x ≤ 2.

The function is an odd function and hence an = 0 for all n ≥ 0.

bn =
1

2

∫ 2

−2
f(x) sin

nπx

2
dx =

∫ 2

0

(x− 1) sin
nπx

2
dx

=

[
(x− 1)

∫
sin

nπx

2
dx−

∫
1 ·
∫

sin
nπx

2
dx dx

]2
0

=
2

nπ

[
(x− 1)(−1) cos

nπx

2
+

∫
cos

nπx

2
dx

]2
0

=
2

nπ

[
(x− 1)(−1) cos

nπx

2
+

2

nπ
sin

nπx

2

]2
0

=
2

nπ
[− cosnπ − 1]

=
2

nπ

[
(−1)n+1 − 1

]
.

Hence f(x) ∼
∞∑
n=1

2
nπ

[(−1)n+1 − 1] sin(nπx
2

), x ∈ [−2, 2].

The graph of the partial sums of the Fourier series of the function is given below.



Department of Mathematics, P R Thakur Govt College 14

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

-----> x

--
--

--
>

 s
u
m

(x
)

Partial Sum of 5 terms of Fourier Series

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

-----> x

--
--

--
>

 s
u
m

(x
)

Partial Sum of 10 terms

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

-----> x

--
--

--
>

 s
u
m

(x
)

Partial Sum of 50 terms

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

-----> x

--
--

--
>

y
=

f(
x
)

The graph of the function y=f(x)

Problem. 16 Find the Fourier series of the following functions in the intervals stated:

1. f(x) =

{
1, −2 ≤ x < 0
−1, 0 ≤ x ≤ 2.

2. f(x) =

{
0, −2 ≤ x < 0
x, 0 ≤ x ≤ 2.

3. f(x) = x2,−1 ≤ x ≤ 1.

4. f(x) = 1− |x|,−1 ≤ x ≤ 1.

5. f(x) = x+ x2,−1 ≤ x ≤ 1.

Properties of Fourier Series

Definition. 17 Let 1
2
a0 +

∑
(an cosnx+ bn sinnx) be a Fourier series. For n ∈ N the partial

sum 1
2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx) is called the n-th partial sum and is denoted by Sn.

It can be noted that the n-th partial sum is actually a sum of (2n+ 1) terms.
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Theorem. 18 (Bessel’s Inequality) If f : [−π, π]→ R is integrable function and an, bn are the

Fourier coefficients of f then 1
2
a20 +

∞∑
n=1

(a2n + b2n) ≤ 1
π

∫ π
−π(f(x))2 dx.

Proof. For n ∈ N define Sn(x) = 1
2
a0 +

∑n
k=1(ak cos kx+ bk sin kx), x ∈ [−π, π]. Then

1

π

∫ π

−π
(f(x)− Sn(x))2 dx =

1

π

∫ π

−π

[
(f(x))2 − 2f(x)Sn(x) + (Sn(x))2

]
dx

=
1

π

∫ π

−π
(f(x))2 dx− 2

π

∫ π

−π
f(x)Sn(x) dx+

1

π

∫ π

−π
(Sn(x))2 dx. (1)

Now,

1

π

∫ π

−π
f(x)Sn(x) dx =

1

π

∫ π

−π
f(x)

(
1

2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx)

)
dx

=
a0
2

1

π

∫ π

−π
f(x) dx+

n∑
k=1

(
ak
π

∫ π

−π
f(x) cos kx dx+

bk
π

∫ π

−π
f(x) sin kx dx

)
=

1

2
a20 +

n∑
k=1

(
a2k + b2k

)
. (2)

Also

1

π

∫ π

−π
(Sn(x))2 dx =

1

π

∫ π

−π

(
1

2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx)

)2

dx

=
a20
4π

∫ π

−π
dx+

1

π

n∑
k=1

(
a2k

∫ π

−π
cos2 kx dx+ b2k

∫ π

−π
sin2 kx dx

)
(other integrals will vanish due to orthogonality relation)

=
a20
4π

2π +
1

π

n∑
k=1

(
a2kπ + b2kπ

)
=

1

2
a20 +

n∑
k=1

(
a2k + b2k

)
. (3)

Since

∫ π

−π
(f(x)− Sn(x))2 dx ≥ 0 for all n ∈ N, using (1), (2) and (3),

0 ≤
∫ π

−π
(f(x)− Sn(x))2 dx

=
1

π

∫ π

−π
(f(x))2 dx− 2

(
1

2
a20 +

n∑
k=1

(a2k + b2k)

)
+

(
1

2
a20 +

n∑
k=1

(a2k + b2k)

)

=
1

π

∫ π

−π
(f(x))2 dx−

(
1

2
a20 +

n∑
k=1

(a2k + b2k)

)
,
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which implies that
1

2
a20 +

n∑
k=1

(a2k + b2k) ≤
1

π

∫ π

−π
(f(x))2 dx. Since this is true for all n ∈ N it

follows that
1

2
a20 +

∞∑
k=1

(a2k + b2k) ≤
1

π

∫ π

−π
(f(x))2 dx. �

Corollary. 19 For an integrable function f defined on [−π, π], the series
∑
a2n and

∑
b2n

are convergent and hence lim
n→∞

an = lim
n→∞

bn = 0.

Proof. Sine
∑
a2n ≤ 1

2
a20 +

∑∞
k=1(a

2
k + b2k) ≤ 1

π

∫ π
−π(f(x))2 dx < ∞, it follows that

∑
a2n is

bounded above and hence is convergent. Similarly
∑
bn is also convergent. This imply that

lim a2n = 0 and lim b2n = 0 and hence lim an = lim bn = 0. �

Theorem. 20 (Parseval’s Identity) If f is integrable in [−π, π], an, bn are the Fourier coeffi-

cients of f then the identity, called the Parseval’s Identity,

1

2
a20 +

∞∑
n=1

(a2n + b2n) =
1

π

∫ π

−π
(f(x))2 dx

is true if and only if lim
n→∞

∫ π

−π
(f(x)− Sn(x))2 dx = 0.

Proof. From the proof of Theorem 18 it follows that∫ π

−π
(f(x)− Sn(x))2 dx =

∫ π

−π
(f(x))2 dx−

[
1

2
a20 +

n∑
k=1

(a2k + b2k)

]
.

Since this is true for every n ∈ N we can take limit as n→∞, hence,

lim
n→∞

∫ π

−π
(f(x)− Sn(x))2 dx =

∫ π

−π
(f(x))2 dx−

[
1

2
a20 +

∞∑
k=1

(a2k + b2k)

]
.

Hence
∫ π
−π(f(x))2 dx−

[
1
2
a20 +

∑∞
k=1(a

2
k + b2k)

]
= 0 if and only if lim

n→∞

∫ π
−π(f(x)−Sn(x))2 dx = 0,

i.e., 1
2
a20 +

∑∞
k=1(a

2
k + b2k) =

∫ π
−π(f(x))2 dx if and only if lim

n→∞

∫ π
−π(f(x)− Sn(x))2 dx = 0. �

Theorem. 21 (Reimann Lebesgue lemma) For a function f integrable in an interval [a, b],

lim
n→∞

∫ b

a

f(x) cosnx dx = 0 and lim
n→∞

∫ b

a

f(x) sinnx dx = 0.

Proof. Since the interval [a, b] is arbitrary, we consider the following cases:

Case I: When [a, b] ⊂ [−π, π], we define a function g : [−π, π]→ R by g(x) = f(x) when x ∈
[a, b] and g(x) = 0 when x ∈ [−π, π]\[a, b]. Then

∫ b
a
f(x) cosnx dx =

∫ π
−π g(x) cosnx dx =
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πan, n ≥ 0. Hence by Corollary 19, lim
n→∞

∫ b
a
f(x) cosnx dx = lim

n→∞

∫ π
−π f(x) cosnx dx =

lim
n→∞

πan = 0.

Similarly, lim
n→∞

∫ b
a
f(x) sinnx dx = 0.

Case II: When [a, b] ⊂ [(k − 1)π, (k + 1)π] for some integer k. Then extend f to the entire

[(k−1)π, (k+1)π] by taking f(x) = 0 for x ∈ [(k−1)π, (k+1)π]\[a, b]. Define g : [−π, π]→
R by g(x) = f(x + kπ),−π ≤ x ≤ π. Then, since the functions sinx, cosx are periodic

of period 2π, we have

∫ b

a

f(x) cosnx dx =

∫ (k+1)π

(k−1)π
f(x) cosnx dx =

∫ π

−π
g(x) cosnx dx =

πan. Similarly,

∫ b

a

f(x) sinnx dx = πbn. Hence by using Corollary 19 the result follows.

Case III: When [a, b] does not contained in [(k − 1)π, (k + 1)π] for any integer k. Then we

divide the interval [a, b] into subintervals [a, c1), [c1, c2), . . . , [ck, b] such that each of these

subintervals is contained in [(k − 1)π, (k + 1)π] for some integer k. Then,∫ b

a

f(x) cosnx =

∫ c1

a

f(x) cosnx+

∫ c2

c1

f(x) cosnx+ · · ·+
∫ b

ck

f(x) cosnx.

Taking limit as n→∞, by Case II each of the integrals in right hand side vanish. Hence

lim
n→∞

∫ b

a

f(x) cosnx = 0.

Similar for the other integral. �

Corollary. 22 If f is integrable in [−π, π] and −π ≤ a < b ≤ π then,

lim
n→∞

∫ b

a

f(x) sin(n+ 1
2
)x dx = 0.

Proof. Since sin(n+ 1
2
)x = sinnx cos 1

2
x+cosnx sin 1

2
x, we have lim

n→∞

∫ b
a
f(x) sin(n+ 1

2
)x dx =

lim
n→∞

∫ b
a

[f(x) sin 1
2
x] cosnx dx+ lim

n→∞

∫ b
a

[f(x) cos 1
2
x] sinnx dx.

Since f(x) sin 1
2
x and f(x) cos 1

2
x are integrable functions, by Riemann Lebesgue Lemma we

have lim
n→∞

∫ b
a
[f(x) sin 1

2
x] cosnx dx = 0 and lim

n→∞

∫ b
a
[f(x) cos 1

2
x] sinnx dx = 0. Hence the result

follows. �

We observed in examples that the Fourier series of a function f converges to f at some points

of the domain of f and does not converge at some other points. This naturally leads to the

question – at which points (of the domain of f) the series converges to f , and at which points

the series does not converge to f , or whether it converges at all? To answer the above question

we should first define Dirichlet Kernel which will occur frequently in what follows.
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Definition. 23 For n ∈ N the function Dn(x) =
sin(n+ 1

2
)x

2 sin 1
2
x

for x 6= 2kπ and Dn(2kπ) = n+ 1
2
,

x ∈ R, and k ∈ Z, is called the Dirichlet Kernel.

Since lim
x→0

sin(n+ 1
2
)x

2 sin 1
2
x

= lim
x→0

cos(n+ 1
2
)x×(n+ 1

2
)

2 cos 1
2
x× 1

2

= n+ 1
2
, Dn(x) is continuous everywhere.

Lemma. 24 The function Dn(x) has the following properties: (i) Dn is an even function, (ii)

Dn is a periodic function of period 2π and (iii)
∫ π
−πDn(x) dx = π.

Proof. For k ∈ N we have sin(k + 1
2
)x− sin(k − 1

2
)x = 2 cos kx sin 1

2
x. Hence,

n∑
k=1

2 cos kx sin 1
2
x =

n∑
k=1

(sin(k + 1
2
)x− sin(k − 1

2
)x) = sin(n+ 1

2
)x− sin 1

2
x.

which implies that

sin 1
2
x+

n∑
k=1

2 cos kx sin 1
2
x = sin(n+ 1

2
)x,

i.e., sin 1
2
x

(
1 +

n∑
k=1

2 cos kx

)
= sin(n+ 1

2
)x

or,
1

2
+

n∑
k=1

cos kx =
sin(n+ 1

2
)x

2 sin 1
2
x

= Dn(x).

Hence Dn(x) = 1
2

+
n∑
k=1

cos kx which is an even function and also a periodic function of period

2π. Finally,
∫ π
−πDn(x) dx =

∫ π
−π(1

2
+

n∑
k=1

cos kx) dx = 1
2

∫ π
−π dx+

n∑
k=1

∫ π
−π cos kx dx = π. �

Lemma. 25 For a periodic function f of period p, for any a ∈ R,

∫ p

0

f(x) dx =

∫ a+p

a

f(x) dx.

Proof. Since f(x+p) = f(x),
∫ a
0
f(x) dx =

∫ a
0
f(x+p) dx, replacing x+p = z,

∫ a
0
f(x+p) dx =∫ a+p

p
f(z) dz. Hence,

∫ p

0

f(x) dx =

∫ a

0

f(x) dx+

∫ p

a

f(x) dx =

∫ a+p

p

f(z) dz +

∫ p

a

f(x) dx

=

∫ p

a

f(x) dx+

∫ a+p

p

f(x) dx =

∫ a+p

a

f(x) dx.

This completes the proof. �

The above lemma says that if f is a periodic function of period p then the integral of f over

any interval of length p remains same.
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Theorem. 26 [Convolution Theorem:] If f is integrable and periodic of period 2π then

Sn(x) =
1

π

∫ π

−π
f(x− u)Dn(u) du

where Sn is the n-th partial sum of the Fourier series of f and Dn is the Dirichlet kernel.

Proof. Putting the values of the Fourier coefficients ak, bk in the expression of Sn,

Sn(x) =
1

2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx)

=
1

2π

∫ π

−π
f(t) dt+

n∑
k=1

(
1

π

∫ π

−π
f(t) cos kt dt cos kx+

1

π

∫ π

−π
f(t) sin kt dt sin kx

)

=
1

π

∫ π

−π
f(t)

(
1

2
+

n∑
k=1

(cos kt cos kx+ sin kt sin kx)

)
dt

=
1

π

∫ π

−π
f(t)

(
1

2
+

n∑
k=1

cos k(x− t)

)
dt =

1

π

∫ π

−π
f(t)Dn(x− t) dt.

Put x− t = u, then dt = − du and when t = −π, u = x+π and when t = π, u = x−π. Hence,

Sn(x) =
1

π

∫ x−π

x+π

f(x− u)Dn(u)(−du) =
1

π

∫ x+π

x−π
f(x− u)Dn(u) du

=
1

π

∫ π

−π
f(x− u)Dn(u) du (Since both f and Dn are periodic of period 2π) �.

The relation convolution of f with Dn is defined as (f ∗Dn)(x) =

∫ π

−π
f(t)Dn(x− t) dt. Hence

from the proof of the above theorem it reveals that for a periodic function f of period 2π the

n-th partial sum is given by Sn(x) = (f ∗Dn)(x), n ∈ N.

Corollary. 27 If f is integrable and periodic of period 2π then

Sn(x) =
1

π

∫ π

0

[f(x+ u) + f(x− u)]Dn(u) du

where Sn is the n-th partial sum of the Fourier series of f and Dn is the Dirichlet kernel.

Proof. We have from convolution theorem

Sn(x) =
1

π

∫ π

−π
f(x− u)Dn(u) du

=
1

π

∫ 0

−π
f(x− u)Dn(u) du+

1

π

∫ π

0

f(x− u)Dn(u) du.
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Replacing u = −v in the first integral, du = − dv, when u = −π, v = π and when u = 0, v = 0,

and since Dn is an even function, we have

Sn(x) =
1

π

∫ 0

π

f(x+ v)Dn(−v)(− dv) +
1

π

∫ π

0

f(x− u)Dn(u) du

=
1

π

∫ π

0

f(x+ v)Dn(v) dv +
1

π

∫ π

0

f(x− u)Dn(u) du

=
1

π

∫ π

0

f(x+ u)Dn(u) du+
1

π

∫ π

0

f(x− u)Dn(u) du.

=
1

π

∫ π

0

[f(x− u) + f(x+ u)]Dn(u) du.

Hence the result. �

Lemma. 28 If f is integrable and periodic of period 2π then for any function S(x) defined on

R,

Sn(x)− S(x) =
1

π

∫ π

0

[f(x+ u) + f(x− u)− 2S(x)]Dn(u) du.

where Sn(x) is the partial sum of the Fourier series of f and Dn is the Dirichlet kernel.

Proof. We have Sn(x) = 1
π

∫ π
0

[f(x−u)+f(x+u)]Dn(u) du. It is also known that
∫ π
0
Dn(u) du

= π
2

which implies that
∫ π
0

2S(x)Dn(u) du = πS(x). Hence,

Sn(x)− S(x) =
1

π

∫ π

0

[f(x− u) + f(x+ u)]Dn(u) du− 1

π

∫ π

0

2S(x)Dn(u) du

=
1

π

∫ π

0

[f(x− u) + f(x+ u)− 2S(x)]Dn(u) du.

Hence the result. �

Lemma. 29 If f is piecewise continuous and periodic of period 2π then

Sn(x)− 1
2
[f(x+) + f(x−)] =

1

π

∫ π

0

[f(x+u)−f(x+)]Dn(u) du+
1

π

∫ π

0

[f(x−u)−f(x−)]Dn(u) du.

where Sn(x) is the partial sum of the Fourier series of f and Dn is the Dirichlet kernel.

Proof. The existence of f(x+) and f(x−) follow from piecewise continuity of f . Taking

S(x) = 1
2
(f(x+) + f(x−)) in the above lemma the result follows. �

It is to be noted that piecewise continuity of f is only a sufficient condition of existence of

f(x+) and f(x−) is its domain.
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Theorem. 30 [Dirichlet’s Condition:] If f is piecewise smooth and periodic of period 2π then

lim
n→∞

Sn(x) =
f(x+ 0) + f(x− 0)

2
, if x ∈ (−π, π)

=
f(π − 0) + f(−π + 0)

2
, if x = ±π.

where Sn(x) denotes the n-th partial sum of the Fourier series of f .

Proof. In view of Lemma 29 we have for n ∈ N, x ∈ (−π, π)

Sn(x)− 1

2
[f(x+) + f(x−)]

=
1

π

∫ π

0

[f(x+ u)− f(x+)]Dn(u) du+
1

π

∫ π

0

[f(x− u)− f(x−)]Dn(u) du

=
1

π

∫ π

0

[f(x+ u)− f(x+)]

2 sin 1
2
u

sin(n+ 1
2
)u du+

1

π

∫ π

0

[f(x− u)− f(x−)]

2 sin 1
2
u

sin(n+ 1
2
)u du

Now the functions [f(x+u)−f(x+)]

2 sin 1
2
u

and [f(x−u)−f(x−)]
2 sin 1

2
u

are piecewise continuous on 0 < u ≤ π. To

check their continuity at u = 0 we apply L’Hospital’s Theorem to get lim
u→0+

[f(x+u)−f(x+)]

2 sin 1
2
u

=

f ′(x+ 0) and lim
u→0+

[f(x−u)−f(x−)]
2 sin 1

2
u

= −f ′(x− 0).

Hence the functions [f(x+u)−f(x+)]

2 sin 1
2
u

and [f(x−u)−f(x−)]
2 sin 1

2
u

are piecewise continuous on 0 ≤ u ≤ π and

hence integrable there. By Corollary 22 of Riemann Lebesgue Theorem it follows that

lim
n→∞

∫ π

0

[f(x+ u)− f(x+)]

2 sin 1
2
u

sin(n+ 1
2
)u du = 0

and lim
n→∞

∫ π

0

[f(x− u)− f(x−)]

2 sin 1
2
u

sin(n+ 1
2
)u du = 0.

Hence lim
n→∞

Sn(x)− 1
2
[f(x+) + f(x−)] = 0, i.e., lim

n→∞
Sn(x) = 1

2
[f(x+) + f(x−)].

When x = π, since f is periodic of period 2π, f(π + u) = f(−π + u) and hence f(π + 0) =

f(−π+0). Thus 1
2
(f(π−0)+f(π+0)) = 1

2
(f(π−0)+f(−π+0)). Hence lim

n→∞
Sn(π) = 1

2
(f(π−

0)+f(−π+0)). Similarly lim
n→∞

Sn(−π) = 1
2
(f(−π−0)+f(−π+0)) = 1

2
(f(π−0)+f(−π+0)).

This completes the proof.

Example. 31 Find the Fourier serier series of the function f(x) = x + x2, −π < x ≤ π and

hence deduce that π2

6
=
∑

1
n2 .

If 1
2
a0 +

∑
(an cosnx+ bn sinnx) is the Fourier series of f then a0 = 1

π

∫ π
−π(x+ x2) dx = 2π2

3
.
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So 1
2
a0 = 1

3
π2. For n ≥ 1,

an =
1

π

∫ π

−π
(x+ x2) cosnx dx =

1

π

∫ π

−π
x cosnx dx+

1

π

∫ π

−π
x2 cosnx dx

= 0 +
2

π

∫ π

0

x2 cosnx dx = (−1)n
4

n2
.

bn =
1

π

∫ π

−π
(x+ x2) sinnx dx =

1

π

∫ π

−π
x sinnx dx+

1

π

∫ π

−π
x2 sinnx dx

=
2

π

∫ π

0

x sinnx dx+ 0 = (−1)n+1 2

n
.

Hence the Fourier series is 1
3
π2 +

∞∑
n=1

[(−1)n 4
n2 cosnx+ (−1)n+1 2

n
sinnx]

The function f(x) = x+x2 made periodic over R and hence is piecewise smooth. We can apply

Dirichlet’s criterion. The sum of the series at x = π is

1

2
(f(π − 0) + f(−π + 0)) =

1

2
(π2 + π + π2 − π) = π2.

Also at x = π the series becomes

1

3
π2 +

∞∑
n=1

[(−1)n
4

n2
cosnπ + (−1)n+1 2

n
sinnπ] =

1

3
π2 +

∞∑
n=1

(−1)n
4

n2
(−1)n =

1

3
π2 +

∞∑
n=1

4

n2
.

Hence we have π2 = 1
3
π2 +

∞∑
n=1

4
n2 , i.e., 1

6
π2 =

∞∑
n=1

1
n2 .

—∗—
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