

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours Part-II Examination, 2019

MICROBIOLOGY

PAPER: MCBA-III

Time Allotted: 4 Hours Full Marks: 100

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

All symbols are of usual significance.

Use Separate Answer Scripts for each Group and mention Group on Answer Scripts.

		GROUP-A	
		Answer Question No. 1 and any four questions from the rest	
1.		Answer any <i>five</i> questions from the following:	$2 \times 5 = 10$
	(a)	What is the significance of meiotic cell division in higher eukaryotes?	
	(b)	What is leader peptide?	
	(c)	How does prokaryotic ribosomes recognize the 5' end of mRNA?	
	(d)	What would happen for a lipid bilayer if phospholipids had only one hydrocarbon chain instead of two?	
	(e)	What is DNA gyrase? Briefly mention its function.	
	(f)	After cell division, how are nuclear and cytosolic proteins resorted so that new nucleus receives only nuclear proteins?	
	(g)	How does proof reading take place during DNA replication?	
	(h)	What would happen for mutant cells that cannot degrade cyclins?	
2.	(a)	How effector molecules and regulatory proteins control the lac operon?	2
	(b)	How glucose acts as catabolic repressor?	3
	(c)	How does AraC protein act both as activator as well as inhibitor of BAD operon?	3
	(d)	What is gratuitous inducer?	2
3.	(a)	Explain with diagram what would have been the observation in the classical experiment of Messelson and Stahl, if DNA replication would have been conservative in nature?	3
	(b)	Describe the role of OriC in <i>E. coli</i> replication.	2

B.Sc./Part-II/Hons./MCBA-III/2019

	(c)	What are the roles of primase, helicase and SSB protein in DNA replication?	3
	(d)	Why do eukaryotes have multiple origins of replication in contrast to prokaryotes which usually has one?	2
4.	(a)	Explain why t-RNA molecules must have both unique and common structural features. According to the Wobble principle what is the minimum number of t-RNAs required to decode the six leucine codons — UUA, UUG, CUU, CUC, CUA and CUG? Provide explanation for your answer.	4
	(b)	<i>E. coli</i> mutants that are $\operatorname{lac} Y^-$ retain the capacity to synthesize β -galactusidase. However, even though $\operatorname{lac} I^-$ gene remains intact, β -galactosidase can no longer be induced by adding lactose to the medium. Explain.	3
	(c)	What will be the number of OriC in a Eukaryotic DNA containing 3×10^9 bP (replication rate 1,50,000 nucleotides/min, cell cycle G1 = 10 hrs, $S=8$ hrs, G2 = 5.5 hrs and M = 30 min.) Is the process applicable in prokaryotic replication system?	3
5.		Write short notes on:	$2\frac{1}{2} \times 4 = 10$
	(a)	Cilia	2 2 ~=10
	` '	Polysome	
	, ,	r-RNA	
	` ′	Okazaki fragments.	
6.	(a)	What are the differences between eukaryotic and prokaryotic transcription?	3
	(b)	What is transcriptional attenuator? How is it involved in regulation of anabolic operon?	2+1
	(c)	Operator and promoter are cis-dominant. — Explain with reference to lac operon.	2
	(d)	Define Microtubule organizing centre.	2
7.	(a)	How do prokaryotes distinguish between Initiator and internal AUG?	4
	(b)	If Poly G is used as mRNA in an incorporation experiment, glycine is incorporated into a polypeptide. If Poly C is used, proline is incorporated. However if both poly G and poly C are used, no amino acid actid is incorporated. Explain.	3
	(c)	Draw the level the clover leaf structure of tRNA stating a specific feature of each arm.	3
8.	(a)	Why do S. cerevisiae α -mating type cells mate only with a-mating type cells? Design an experiment to determine the mating type of <i>S. cerevisiae</i> cells.	3+3
	(b)	How is RER different from SER?	2
	(c)	What is MPF?	2

GROUP-B

Answer Question No. 9 and any four questions from the rest

9.	Answer any <i>five</i> questions from the following:	$2 \times 5 = 10$
(a)	Explain why yeast consumes more sugar when growing anaerobically than when growing aerobically.	
(b)	What are glucogenic amino acids? State with two examples.	
(c)	Why is phosphofructokinase regarded as a pacemaker enzyme?	
(d)	Which reaction of glycolysis is inhibited by fluoride? Write the reaction.	
(e)	What is allosteric enzyme? Give one example.	
(f)	What do you mean by turnover no. of enzyme?	
(g)	What is the common structural feature of ATP, FAD and NAD?	
(h)	What are aromatic amino acids? Give one example.	
10.(a)	Why does the same coenzyme behave differently in case of transminase and aldolase?	3
(b)	Why is lactic acid produced under anaerobic conditions by some microorganisms?	2
(c)	Hexokinase transfers phosphoryl groups from ATP to glucose but not water.	$2\frac{1}{2}$
(d)	Pyruvate dehydrogenase and α keto glutarate dehydrogenase have similarities — Justify.	$2\frac{1}{2}$
11.(a)	Which enzymes are involved in linking the pentose phosphate pathway with glycolysis? Give reactions.	2
(b)	If glucose is in excess of normal demands, it is converted to glucose-6-phosphate. Why?	1
(c)	Write down the ATP/GTP generating steps of TCA cycle.	4
(d)	Define holoenzyme. What is the importance of metal ions in enzyme reactions?	3
12.(a)	In anaerobic and energy starved conditions, what will be the fate of Pyruvic acid?	4
(b)	What is PFK? How does it act?	2
(c)	Illustrate the reaction with enzymes and coenzymes in TCA cycle that are involved in generation of NADH.	4
13.(a)	What do you mean by redox-potential?	2
(b)	Write down two main differences between prokaryotic and eukaryotic ETC.	2
(c)	Briefly illustrate the chemiosmotic hypothesis.	4
(d)	Describe briefly the components of ATP Synthase enzyme.	2

B.Sc./Part-II/Hons./MCBA-III/2019

14.	Write short notes on:	$2 \times 5 = 10$
(a)	Zymogen	
(b)	Non protein enzyme	
(c)	Metalozymes	
(d)	Isozymes	
(e)	Modulators.	
15.(a)	What is photophosphorylation? How does it differ from oxidative phosphorylation?	2+2
(b)	How carnitine deficiency affects fatty acid oxidation?	4
(c)	What is meant by direct oxidation pathway?	2
16.(a)	How does carbamoyl phosphate synthase I differ from carbamoyl phosphate synthase II?	2
(b)	"Initial rate of an enzyme catalysed reaction is independent of substrate concentration" — Justify the statement.	2
(c)	What types of changes occur in $K_{\rm m}$ and $V_{\rm max}$ in competitive, non-competitive and uncompetitive inhibition?	6

____×___