

Sample Questions
Software Engineering

1. What is the purpose of SRS document?
2. What do you mean by mutation testing?
3. What do you understand by the control structure of a program?
4. Why data dictionary is used in a DFD model of a system?
5. Which are the major phases in the waterfall model of software development? Which phase

consumes the maximum effort for developing a typical software product?
6. How are the risk associated with a project handled in the spiral model of software

development?
7. Describe the motivation and approaches for integration testing in brief.
8. What is context diagram in DFD? Why is it called level 0 DFD?
9. How path coverage testing method is carried out using control flow graph? Explain with

proper example.
10. Which is a stronger testing: data flow testing or path testing? Justify.
11. What are various types of software maintenance technique?
12. What is recursive relationship in an ER model?
13. What are the advantades and disadvantages of using iterative waterfall model?
14. Explain with an example how a DFD model can be transformed into structure chart.
15. Explain twp software quality matrics: Robustness and Reusability.
16. Write brief about the role of system analyst.
17. What do you mean by V-model in SDLC?
18. What is coghesion and coupling?
19. Distinguish between software verification and software validation?
20. Discuss spiral model for SDLCs? Why it is called meta model?
21. Distiguish between structure chart and flow chart?
22. What does the term "balancing a DFD" mean? Give an example to explain your answer.
23. Consider the following code of segment and construct Control Flow Graph of it. Then use it

to find optimal test cases with the help of Path Coverage Criteria during white box testing:
func(x,y)
{
1 while(x!=y){
2 if(x>y)
3 x=x-y;
4 else y=y-x;
5 }
6 return x;
}

24. Define software quality.
25. What do you menat by system testing?
26. Draw a schematic diagram to represent Waterfall Model of Software Development.
27. Explain the features of prototyping model. What are its advantage and limitations?
28. Distiguish between a physical and logical DFD. Discuss how a physical DFD can be

transformed into a logical DFD.

29. What is software testing? Distinguish between white-box testing and black-box testing.
30. Write a prograam to add two digit integers. Find how many test cases are required to test the

program completely?
31. State attributtes of a "Quality Software"
32. Discuss the spiral model for SDLC and mention the utility of it over waterfall model.
33. In a Hospital Managment System, develop a DFD for a "Ward servide management

system". State all your assumptions.
34. Differentiate between alpha testing and beta testing.
35. Define Cyclomatic complexity.
36. What is meta data?
37. What do you understand by view level in data model?
38. Why is low coupling desirable?
39. Discuss the importance of analysis and design in software life cycle.
40. Discuss characterstics of Spiral model? Why is Spiral model difficult to implement.
41. Draw level-0 and level- DFD of a Library Management System. Make suitable assumptions.
42. How are the risks associated with a project handled in the spiral model of software

development?
43. Lisr four characterstics of a good Software Requirements Specification.
44. What are the main shortcomings of DFD as a tool for performing structured analysis.
45. Explain COCOMO model.

R
Programming

Part - I

File creation:

$ gedit first_program.r

Write Code:
My first program in R Programming
Strings <- "Hello, World!"
print (Strings)

Run:
$ Rscript first_program.r

Output:
[1] "Hello, World!"

R - Data Types

Vectors Lists Matrices Arrays Factors Data Frames

Vectors

Logical TRUE, FALSE Create a vector:

fruit <- c('mango','banana',"pineapple")
print(fruit)

Numeric 3.14, 4, 1000

Integer 2L, 34L, 0L

Complex 2+3i

Character 'A' , "Hello", "TRUE", '13.4'

Raw "Hello" is stored as 48 65 6c 6c 6f

Vectors:

> fruit <- c('mango','banana',"pineapple")
> print(fruit)
[1] "mango" "banana" "pineapple"
>

> element <- c(2,3,4,1,7,8)
> print(element)
[1] 2 3 4 1 7 8
>

Lists:

> L <- list(c(10,20,30),3.14,sin)

> print(L)

[[1]]

[1] 10 20 30

[[2]]

[1] 3.14

[[3]]

function (x) .Primitive("sin")

Matrix:

> M = matrix(c('x','y','z','y','z','x'), nrow = 2, ncol = 3, byrow = TRUE)
> print(M)
 [,1] [,2] [,3]
[1,] "x" "y" "z"
[2,] "y" "z" "x"
>

Array:
> a <- array(c(0,1),dim = c(3,3))
> print(a)
 [,1] [,2] [,3]
[1,] 0 1 0
[2,] 1 0 1
[3,] 0 1 0
>

> a <- array(c(0,1),dim = c(3,3,2))
> print(a)
, , 1

 [,1] [,2] [,3]
[1,] 0 1 0
[2,] 1 0 1
[3,] 0 1 0

, , 2

 [,1] [,2] [,3]
[1,] 1 0 1
[2,] 0 1 0
[3,] 1 0 1
>

Factors:

> fruit<-c('pineapple','mango','banana','mango','pineapple','mango','banana')
> factor_object_fruit <- factor(fruit)
> print(factor_object_fruit)

[1] pineapple mango banana mango pineapple mango banana
Levels: banana mango pineapple

> print(nlevels(factor_object_fruit))
[1] 3
>

Data Frame:

Create the data frame.

Record <- data.frame(

 Name = c("Avik", "Ayan","Sukanta"),

 Roll = c(3, 1, 4),

 Stream = c('BA','BSC','BA'),

 Department = c('Bengali','Math','English')

)

print(Record)

 Name Roll Stream Department

1 Avik 3 BA Bengali

2 Ayan 1 BSC Math

3 Sukanta 4 BA English

>

If-else statement:

 if (test_expression) {
 statement
 }

 x <- 5
 if(x > 0){
 print("Positive number")
 }
 else {

print("Negative number")
}

Loop statement:

Repeat:

repeat {
statement
}

x <- 1
repeat {
print(x)
x = x+1
if (x == 6){
break
}
}

While:

while (test_expression)
{
statement
}

i <- 1
while (i < 10) {
print(i)
i = i+1
}

For:

for (val in sequence)
{
statement
}

i=1
for (i in 1:10) {
 i=i+1
 }
 print(i)

Functions:

Code:
sum <- function(a) {
 sum <- 0
 for(i in 1:a) {
 sum=sum+i

 }
 print(paste("sum=",sum))
}
cat("Enter the value of n: ");
a<-readLines("stdin",n=1);
sum(a)

Output:
Enter the value of n: 5
[1] "sum= 15"

1. Write a program to check a number prime of not.

Program Code
Program to check if the input number is prime or not
take input from the user
cat("Enter a positive number: ");
num <- readLines("stdin",n=1);
num<-as.integer(num)
flag = 0
prime numbers are greater than 1
if(num > 1) {
check for factors
flag = 1
for(i in 2:(num-1)) {
if ((num %% i) == 0) {
flag = 0
break
}
}
}
if(num == 2) flag = 1
if(flag == 1) {
print(paste(num,"is a prime number"))
} else {
print(paste(num,"is not a prime number"))
}

probir@Incredible:~/Documents/R_program$ Rscript prime_number.R
Enter a positive number: 13
[1] "13 is a prime number"

2. Write a program to check the given number arstrong number of not.

Program: Code:

take input from the user
cat("Enter a positive number: ");
num <- readLines("stdin",n=1);
num<-as.integer(num)
count=0
initialize sum
sum = 0

find the sum of the cube of each digit
temp = num
while(temp > 0) {
temp = floor(temp / 10)
count=count+1
}
temp=num

while(temp > 0) {
digit = temp %% 10
sum = sum + (digit ^ count)
temp = floor(temp / 10)
}
display the result
if(num == sum) {
print(paste(num, "is an Armstrong number"))
} else {
print(paste(num, "is not an Armstrong number"))
}

Output:

probir@Incredible:~/Documents/R_program$ Rscript amstrong.R
Enter a positive number: 370
[1] "370 is an Armstrong number"

3. Write a program to find the factorial of a given number.

Program: Code:
facto <- function(){
accept the input provided by the user and convert to integer
cat("Enter a positive number: ");
num <- readLines("stdin",n=1);
num<-as.integer(num)

fact = 1
checking whether the number is negative, zero or positive
if(num < 0) {
print(" The number is negative the factorial does not exist. ")
} else if(num == 0) {
print(" The factorial result is 1 ")
} else {
for(i in 1:num) {
fact = fact * i
}
print(paste(" The factorial result is ", num ,"is", fact))
}
}
facto()

Output:

Enter a positive number: 5
[1] " The factorial result is 5 is 120"

4.Write a program to sort an array in ascending order.

Program Code:

#Bubble Sort
sort.b <- function(x)
{
 if(!is.unsorted(x)) {stop("Vector is already sorted")}
 if(length(x)<2){stop("vector is not long enough") }
 if (!is.vector(x)) { stop("parameter must be a vector") }
 if (!is.numeric(x)) { stop("parameter must be numeric") }

 n = length(x)
 v = x

 for(j in 1:(n-1))
 {
 for(i in 1:(n-j))
 {
 if(v[i+1]<v[i])
 {
 t = v[i+1]
 v[i+1] = v[i]
 v[i] = t
 }
 }
 }
 print(v)
 x = v
}
cat("Enter number of elements: ");
n <- readLines("stdin",n=1);
n<-as.numeric(n)
cat("Enter elements: ");
x<-c()
for(i in 1:n)
{
x[i] <- readLines("stdin",n=1);

i=i+1
}
x<-as.numeric(x)
sort.b(x)

Output:
Enter number of elements: 5
Enter elements: 3
2
-1
5
1
[1] -1 1 2 3 5

	R - Data Types

